Announcements

- P0 / P1 / W1 / W2 in glookup
 - If you have no entry, etc, email staff list!
 - If you have questions, see one of us or email list.
- W1, W2: can be picked up from 188 return box in 283 Soda
- W3: Utilities --- Due Thursday.
- Recall: readings for current material
- Online book: Sutton and Barto

Announcements II

- Section:
 - 101: Tue 3-4pm, 285 Cory
 - 104: Tue 4-5pm, 285 Cory
 - 102: Wed 11-noon, 285 Cory
 - 103: Wed noon-1pm, 285 Cory

MDPs recap

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount \(\gamma \))
- Solution methods:
 - Value iteration (VI)
 - Policy iteration (PI)
 - Asynchronous value iteration
- Current limitations:
 - Relatively small state spaces
 - Assumes T and R are known

MDP Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Rewards come at the end
- Goal: maximize sum of rewards

MDP Example: Grid World

\[
\begin{align*}
\text{MDP} = (S, A, T, R, s_0, \gamma) \\
\text{Set of states } S &= \{ (0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3) \} \\
\text{Set of actions } A &= \{ \text{North, East, South, West} \} \\
\text{Transition model } T &= T(s,a,s') \\
T((0,0), \text{North}, (0,1)) &= 0.8 \\
T((0,0), \text{North}, (1,0)) &= 0.2 \\
T((0,1), \text{North}, (1,0)) &= 0.1 \\
T((0,1), \text{North}, (1,1)) &= 0.1 \\
\text{Initial state } s_0 &= (0,0) \\
\text{Discount factor } \gamma &= 0.9
\end{align*}
\]
Value Iteration

- Idea:
 - $V_i(s)$: the expected discounted sum of rewards accumulated when starting from state s and acting optimally for a horizon of i time steps.
 - Start with $V_0(s) = 0$, which we know is right (why?)
 - Given $V_i(s)$, calculate the values for all states for horizon $i+1$:
 $$ V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] $$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values

Complete procedure

1. Run value iteration (off-line)
 Returns V, which (assuming sufficiently many iterations is a good approximation of V^*)

2. Agent acts.
 At time t the agent is in state s_t and takes the action a_t:

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s, a, s')$
 - A reward function $R(s, a, s')$
 - Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - i.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: learning to walk

Before learning (hand-tuned) One of many learning runs After learning [After 1000 field traversals]

[Institute and Stone, ICRA 2004]

Passive Learning

- Simplified task
 - You don’t know the transitions $T(s, a, s')$
 - You don’t know the rewards $R(s, a, s')$
 - You are given a policy $\pi(s)$
 - Goal: learn the state values
 - ... what policy evaluation did

- In this case:
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon

This is NOT offline planning! You actually take actions in the world and see what happens...
Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[
V^*_T(s) = 0 \\
V^*_{T+1}(s) = \sum_{s'} \binom{(s, \pi(s), s')} R(s, \pi(s), s') + \gamma V^*_T(s')
\]

Why does this work? Because samples appear with the right frequencies.

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- Simple empirical model learning
 - Count outcomes for each s, a
 - Normalize to give estimate of $T(s, a, s')$
 - Discover $R(s, a, s')$ when we experience (s, a, s')

- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

\[
V^*_{T+1}(s) = \sum_{s'} \binom{(s, \pi(s), s')} R(s, \pi(s), s') + \gamma V^*_T(s')
\]

Example: Model-Based Learning

- Episodes:

<table>
<thead>
<tr>
<th>(1,1) up-1</th>
<th>(1,1) up-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2) up-1</td>
<td>(1,2) up-1</td>
</tr>
<tr>
<td>(1,3) right-1</td>
<td>(1,3) right-1</td>
</tr>
<tr>
<td>(2,2) right-1</td>
<td>(2,2) right-1</td>
</tr>
<tr>
<td>(2,3) right-1</td>
<td>(2,3) right-1</td>
</tr>
<tr>
<td>(3,2) up-1</td>
<td>(3,2) up-1</td>
</tr>
<tr>
<td>(3,3) right-1</td>
<td>(3,3) right-1</td>
</tr>
<tr>
<td>(4,3) exit +100</td>
<td>(4,3) exit +100</td>
</tr>
</tbody>
</table>

- Make (s, a, s') union

\[
V(s, \pi(s), s') = \frac{1}{k} \sum_{i=1}^{k} (R(s, \pi(s), s') + \gamma V^*_T(s'))
\]

Model-Free Learning

- Want to compute an expectation weighted by $P(x)$:

\[
E[f(x)] = \sum_x P(x) f(x)
\]

- Model-based: estimate $P(x)$ from samples, compute expectation

\[
x_i \sim P(x) \quad E[f(x)] \approx \frac{1}{k} \sum_i P(x) f(x)
\]

- Model-free: estimate expectation directly from samples

\[
x_i \sim P(x) \quad E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)
\]

Why does this work? Because samples appear with the right frequencies!

Example: Direct Estimation

- Episodes:

<table>
<thead>
<tr>
<th>(1,1) up-1</th>
<th>(1,1) up-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2) up-1</td>
<td>(1,2) up-1</td>
</tr>
<tr>
<td>(1,3) right-1</td>
<td>(1,3) right-1</td>
</tr>
<tr>
<td>(2,2) right-1</td>
<td>(2,2) right-1</td>
</tr>
<tr>
<td>(2,3) right-1</td>
<td>(2,3) right-1</td>
</tr>
<tr>
<td>(3,2) up-1</td>
<td>(3,2) up-1</td>
</tr>
<tr>
<td>(3,3) right-1</td>
<td>(3,3) right-1</td>
</tr>
<tr>
<td>(4,3) exit +100</td>
<td>(4,3) exit +100</td>
</tr>
</tbody>
</table>

- Who needs T and R? Approximate the expectation with samples (drawn from T)

\[
V(s, \pi(s), s') = \frac{1}{k} \sum_i (R(s, \pi(s), s') + \gamma V^*_T(s'))
\]

Sample-Based Policy Evaluation?

- Almost! But we only actually make progress when we move to V^*_T
Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often
- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of $V(s)$:

same update:

$$V^T(s) \leftarrow (1-\alpha)V^T(s) + \alpha \cdot \text{sample}$$

Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
 - Easy to compute from the running average
 - Decreasing learning rate can give converging averages

Policy evaluation when T (and R) unknown --- recap

- Model-based:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Model-free:
 - Direct estimation:
 - $V(s) = \text{sample estimate of sum of rewards accumulated from state } s \text{ onwards}$
 - Temporal difference (TD) value learning:
 - Move values toward value of whatever successor occurs: running average!

$$\text{same update:}$$

$$V^T(s) \leftarrow (1-\alpha)V^T(s) + \alpha \cdot \text{sample}$$