Announcements

- **Upcoming**
 - **new** Tomorrow/Wednesday: probability review session
 - 7:30-9:30pm in 306 Soda
 - P3 due on Thursday (3/4)
 - W4 going out on Thursday, due next week Thursday (3/11)
 - Midterm in evening of 3/18
Today

- We’re almost done with search and planning!
 - MDP’s: policy search wrap-up

- Next, we’ll start studying how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!

- Third part of course: machine learning

Policy Search
MDPs recap

- MDP recap: $(S, A, T, R, s_0, \gamma)$
 - In small MDPs: can find $V(s)$ and/or $Q(s,a)$
 - Known T, R: value iteration, policy iteration
 - Unknown T, R: Q learning
 - In large MDPs: cannot enumerate all states

Function Approximation

- $Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)$
 - Q-learning with linear q-functions:
 - $Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]}$
 - Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features
 - Formal justification: online least squares
Policy Search Idea

- Problem: often the feature-based policies that work well aren't the ones that approximate V/Q best.

- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards.

\[
\pi(s) = \arg \max_a \sum w_i f_i(s,a)
\]

- This is the idea behind policy search, such as what controlled the upside-down helicopter.

Initial weights as \(w^{(0)} \)

\(V^{(0)} = \text{Evaluate}(w^{(0)}) \)

For \(i = 1 : \text{num_iters} \)

\[w^{(i)} = w^{(i-1)} + \text{small perturbation} \]

\(V^{(i)} = \text{Evaluate}(w^{(i)}) \)

\(R \)

if \(V^{(i)} > V^{(i-1)} \) then

- "keep"

else

- \(V^{(i-1)} = V^{(i)} \)
- \(w^{(i-1)} = w^{(i)} \)

\(\text{Run K simulators and return average of sum of rewards accumulated} \)
Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
 → Mostly applicable when prior knowledge allows one to choose a representation with a very small number of free parameters to be learned

Toddler (Tedrake et al.)
Take a Deep Breath…

- We’re done with search and planning!

- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!

- Third part of course: machine learning

Today

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes’ Rule
 - Inference
 - Independence

- You’ll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

- Probability review session tomorrow 7:30-9:30pm in 306 Soda --- you will benefit from it for many lectures/assignments/exam questions if any of the material we are about to go over today is not completely trivial!!
Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green
- Sensors are noisy, but we know \(P(\text{Color} | \text{Distance}) \)

<table>
<thead>
<tr>
<th>Color</th>
<th>Distance 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>0.05</td>
</tr>
<tr>
<td>orange</td>
<td>0.15</td>
</tr>
<tr>
<td>yellow</td>
<td>0.5</td>
</tr>
<tr>
<td>green</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Uncertainty

- General situation:
 - **Evidence**: Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - **Hidden variables**: Agent needs to reason about other aspects (e.g., where an object is or what disease is present)
 - **Model**: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge
Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?

- We denote random variables with capital letters

- Like variables in a CSP, random variables have domains
 - R in \{true, false\} (sometimes write as \{+r, −r\})
 - D in \[0, \infty\)
 - L in possible locations, maybe \{(0,0), (0,1), …\}

Probability Distributions

- Unobserved random variables have distributions

<table>
<thead>
<tr>
<th></th>
<th>P(T)</th>
<th></th>
<th>P(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>warm</td>
<td>0.5</td>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fog</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meteor</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

\[P(W = \text{rain}) = 0.1 \quad P(\text{rain}) = 0.1 \quad P(r) \geq 0.1 \]

- Must have: \(\forall x P(x) > 0 \) \quad \(\sum_x P(x) = 1 \)
Joint Distributions

- A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):
 $$P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)$$
 $$P(x_1, x_2, \ldots, x_n)$$

- Size of distribution if n variables with domain sizes d?
- Must obey:
 $$P(x_1, x_2, \ldots, x_n) \geq 0$$
 $$\sum_{(x_1, x_2, \ldots, x_n)} P(x_1, x_2, \ldots, x_n) = 1$$

- For all but the smallest distributions, impractical to write out

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables

- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

- Constraint satisfaction probs:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact
Events

- An event is a set E of outcomes
 \[P(E) = \sum_{(x_1, \ldots, x_n) \in E} P(x_1 \ldots x_n) \]

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny? $P(T=\text{hot}, W=\text{sunny}) = 0.4$
 - Probability that it's hot? $P(T=\text{hot}) = P(T=\text{hot}, W=\text{sunny}) + P(T=\text{hot}, W=\text{rain}) = 0.4 + 0.1 = 0.5$
 - Probability that it's hot OR sunny? $P(T=\text{hot}) + P(W=\text{sunny}) = 0.5 + 0.6 = 0.7$

Typically, the events we care about are partial assignments, like $P(T=\text{hot})$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

\[
\begin{align*}
P(T, W) & \quad \Downarrow \\
P(T) & = \sum_s P(t, s) \\
P(W) & = \sum_t P(t, s)
\end{align*}
\]

\[
P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)
\]
Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

\[P(a|b) = \frac{P(a, b)}{P(b)} \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

\[
P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}
\]

\[
P(W = r, T = c) = \frac{P(W = r) \cdot P(T = c)}{P(T = c)} = \frac{0.3 \cdot 0.8}{0.3 + 0.2} = 0.6
\]
Normalization Trick

- A trick to get a whole conditional distribution at once:
 - Select the joint probabilities matching the evidence
 - Normalize the selection (make it sum to one)

\[
P(T, W)
\]

- Why does this work? Sum of selection is \(P(\text{evidence}) \) (\(P(r) \), here)

\[
P(x_1 | x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}
\]