Announcements

- **Midterms**
 - In glookup

- **Assignments**
 - W5 due Thursday
 - W6 going out Thursday

- Midterm course evaluations in your email soon
Outline

- Bayes net refresher:
 - Representation
 - Inference
 - Enumeration
 - Variable elimination
 - Approximate inference through sampling
 - Value of information

Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 - $P(X|a_1 \ldots a_n)$
 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in BNs

- For all joint distributions, we have (chain rule):
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|x_1, \ldots, x_{i-1}) \]

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them

- Building the full joint table takes time and space exponential in the number of variables
General Variable Elimination

- **Query:** \(P(Q|E_1 = e_1, \ldots, E_k = e_k) \)

- **Start with initial factors:**
 - Local CPTs (but instantiated by evidence)

- **While there are still hidden variables (not Q or evidence):**
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H

- Join all remaining factors and normalize

- Complexity is exponential in the number of variables appearing in the factors---can depend on ordering but even best ordering is often impractical

Approximate Inference

- **Basic idea:**
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- **Why sample?**
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)
Prior Sampling

- This process generates samples with probability:

\[
S_{PS}(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{Parents}(X_i)) = P(x_1 \ldots x_n)
\]

...i.e. the BN’s joint probability

- Let the number of samples of an event be \(N_{PS}(x_1 \ldots x_n) \)

- Then

\[
\lim_{N \to \infty} \bar{P}(x_1, \ldots, x_n) = \lim_{N \to \infty} \frac{N_{PS}(x_1, \ldots, x_n)}{N} = S_{PS}(x_1, \ldots, x_n) = P(x_1 \ldots x_n)
\]

- I.e., the sampling procedure is consistent
Example

- We’ll get a bunch of samples from the BN:
 - +c, -s, +r, +w
 - +c, +s, +r, +w
 - -c, +s, +r, -w
 - +c, -s, +r, +w
 - -c, -s, -r, +w

- If we want to know $P(W)$
 - We have counts $<+w:4, -w:1>$
 - Normalize to get $P(W) = <+w:0.8, -w:0.2>$
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about $P(C|+w)$? $P(C|+r, +w)$? $P(C|-r, -w)$?
 - Fast: can use fewer samples if less time (what’s the drawback?)

Rejection Sampling

- Let’s say we want $P(C)$
 - No point keeping all samples around
 - Just tally counts of C as we go

- Let’s say we want $P(C|+s)$
 - Same thing: tally C outcomes, but ignore (reject) samples which don’t have $S=+s$
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)
Likelihood Weighting

- Problem with rejection sampling:
 - If evidence is unlikely, you reject a lot of samples
 - You don’t exploit your evidence as you sample
 - Consider P(B|+a)

- Idea: fix evidence variables and sample the rest

- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents

\[
\begin{array}{c|c|c|c|c}
 & -b, -a & -b, +a & +b, -a & +b, +a \\
\hline
 +c & 0.1 & 0.9 & 0.9 & 0.1 \\
 -c & 0.5 & 0.5 & 0.2 & 0.8 \\
\end{array}
\]

\[
P(W|S, R) = \frac{P(W|S, R, +c, +s, +r, +w)}{P(W|S, R, -c, -s, -r, -w)} = 1.0 \times 0.1 \times 0.99
\]
Likelihood Weighting

- Sampling distribution if \(z \) sampled and \(e \) fixed evidence

 \[
 S_{WS}(z, e) = \prod_{i=1}^{l} P(z_i|\text{Parents}(Z_i))
 \]

- Now, samples have weights

 \[
 w(z, e) = \prod_{i=1}^{m} P(e_i|\text{Parents}(E_i))
 \]

- Together, weighted sampling distribution is consistent

 \[
 S_{WS}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i|\text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i|\text{Parents}(e_i))
 \]

 \[
 P(z, e) = P(z, e)
 \]

Likelihood Weighting

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W’s value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence

- Likelihood weighting doesn’t solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn’t more likely to get a value matching the evidence)

- We would like to consider evidence when we sample every variable
Markov Chain Monte Carlo*

- **Idea**: instead of sampling from scratch, create samples that are each like the last one.

- **Procedure**: resample one variable at a time, conditioned on all the rest, but keep evidence fixed. E.g., for $P(b|c)$:

 ![Diagram with variables and arrows]

- **Properties**: Now samples are not independent (in fact they’re nearly identical), but sample averages are still consistent estimators!

- **What’s the point**: both upstream and downstream variables condition on evidence.
Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
 - Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
 - New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

Decision Networks

- Action selection:
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action
Example: Decision Networks

Umbrella = leave
EU(leave) = \(\sum_w P(w)U(\text{leave}, w) \)
= \(0.7 \cdot 100 + 0.3 \cdot 0 = 70 \)

Umbrella = take
EU(take) = \(\sum_w P(w)U(\text{take}, w) \)
= \(0.7 \cdot 20 + 0.3 \cdot 70 = 35 \)

Optimal decision = leave
MEU(a) = \(\max_a \text{EU}(a) = 70 \)

Evidence in Decision Networks

- Find \(P(W|F=\text{bad}) \)
- Select for evidence
- First we join \(P(W) \) and \(P(\text{bad}|W) \)
- Then we normalize

\[
\begin{array}{ccc}
W & P(W) & P(W|F=\text{bad}) \\
\text{sun} & 0.7 & \text{sun} \\
\text{rain} & 0.3 & \text{rain} \\
\end{array}
\]

\[
\begin{array}{ccc}
W & P(W) & P(W|F=\text{bad}) \\
\text{sun} & 0.14 & \text{sun} \\
\text{rain} & 0.27 & \text{rain} \\
\end{array}
\]

\[
\begin{array}{ccc}
W & P(W) & P(W|F=\text{bad}) \\
\text{sun} & 0.14 & \text{sun} \\
\text{rain} & 0.27 & \text{rain} \\
\end{array}
\]

\[
\begin{array}{ccc}
W & P(W) & P(W|F=\text{bad}) \\
\text{sun} & 0.14 & \text{sun} \\
\text{rain} & 0.27 & \text{rain} \\
\end{array}
\]
Example: Decision Networks

Umbrella = leave

$EU(\text{leave}|\text{bad}) = \sum_w P(w|\text{bad})U(\text{leave}, w)$

$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$

Umbrella = take

$EU(\text{take}|\text{bad}) = \sum_w P(w|\text{bad})U(\text{take}, w)$

$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$

Optimal decision = take

$\text{MEU}(F = \text{bad}) = \max_\alpha EU(\alpha|\text{bad}) = 53$