Today

- A* (tree) search
 - Admissible heuristics
- Graph search
 - Consistent heuristics
- Extensions
 - Weighted A* \(f = g + \varepsilon h \)
 - Anytime A*
 - Memory issue \(O(n) \) \(\rightarrow\) IDA*
 - Bi-directional
- Example Applications
- (Beginnings of CSPs)

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)

General Tree Search

```
Function TREE-SEARCH(problem, strategy) returns a solution, or failure
    Initialize the search tree using the initial state of problem
    keep going
    if there are no candidates for expansion then return failure
    choose a leaf node for expansion according to strategy
    if the node contains a goal state then return the corresponding solution
    else expand the node and add the resulting nodes to the search tree
end
```

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy

- Main question: which fringe nodes to explore?

A* Review

- A* uses both backward costs \(g \) and forward estimate \(h: f(n) = g(n) + h(n) \)
- A* tree search is optimal with admissible heuristics
- Proof forthcoming
- Heuristic design is key: relaxed problems can help
- Special cases:
 - Greedy: \(g = 0 \) [non-optimal!]
 - Uniform cost: \(h = 0 \) [optimal]
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Uniform Cost</th>
<th>A star</th>
</tr>
</thead>
</table>

UCS vs A* Contours

- Uniform-cost expanded in all directions
- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, with new actions (“some cheating”) available
- Inadmissible heuristics are often useful too (why?)

Admissible Heuristics

- A heuristic \(h \) is admissible (optimistic) if:
 \[
 h(n) \leq h^*(n)
 \]
 where \(h^*(n) \) is the true cost to a nearest goal

Example:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \(h(\text{start}) = 8 \)
- This is a relaxed-problem heuristic

<table>
<thead>
<tr>
<th></th>
<th>UCS</th>
<th>TILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 steps</td>
<td>6,300</td>
<td>112</td>
</tr>
<tr>
<td>8 steps</td>
<td>(3.6 \times 10^6)</td>
<td>39</td>
</tr>
<tr>
<td>12 steps</td>
<td></td>
<td>227</td>
</tr>
</tbody>
</table>
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?

<table>
<thead>
<tr>
<th>Start State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5 6 7 8</td>
<td>5 6 7 8</td>
</tr>
</tbody>
</table>

Average nodes expanded when optimal path has length:

<table>
<thead>
<tr>
<th>Steps</th>
<th>Tiles</th>
<th>Manhattan</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>227</td>
<td>73</td>
</tr>
</tbody>
</table>

\[h(\text{start}) = 3 + 1 + 2 + ... \]

= 18

8 Puzzle III

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_c \) if \(\forall n : h_a(n) \geq h_c(n) \)

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Optimality of A*: Blocking

Proof:

- What could go wrong?
- We’d have to pop a suboptimal goal G off the fringe before G*

- This can’t happen:
 - Imagine a suboptimal goal G is on the queue
 - Some node \(n \) which is a subpath of G* must also be on the fringe (why?)
 - \(n \) will be popped before G

\[f(n) = g(n) + h(n) \]

\[g(n) + h(n) \leq g(G^*) \]

\[g(G^*) < g(G) \]

\[g(G) = f(G) \]

\[f(n) < f(G) \]

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- Very simple fix: never expand a state twice

Can this wreck completeness? Optimality?
Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to G^* that would have been in queue aren’t, because some worse n' for the same state as some n was dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor which was on the queue when n' was expanded
- Assume $f(p) < f(n)$
- $f(n') < f(n)$ because n' is suboptimal
- p would have been expanded before n'
- So n would have been expanded before n', too
- Contradiction!

Consistency

Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node n, and find its child n' to have lower f value?
- YES:
 - What can we require to prevent these inversions?
 - Consistency: Real cost must always exceed reduction in heuristic

A* Graph Search Gone Wrong

State space graph

Search tree

Consistency

The story on Consistency:
- Definition: $\text{cost}(A \text{ to } C) + h(C) \geq h(A)$
- Consequence in search tree:
 - Two nodes along a path: N_A, N_C
 - $g(N_C) = g(N_A) + \text{cost}(A \text{ to } C)$
 - $g(N_C) + h(C) \geq g(N_A) + h(A)$
 - The f value along a path never decreases
 - Non-decreasing f means you’re optimal to every state (not just goals)

Optimality Summary

- Tree search:
 - A^* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case ($h = 0$)
- Graph search:
 - A^* optimal if heuristic is consistent
 - UCS optimal ($h = 0$ is consistent)
- Consistency implies admissibility
- Challenge: Try to prove this
- Hint: try to prove the equivalent statement not admissible implies not consistent
- In general, natural admissible heuristics tend to be consistent
- Remember, costs are always positive in search!

Today

- A^* (tree) search
 - Admissible heuristics
- Graph search
 - Consistent heuristics
- Extensions
 - Weighted $A^*:\ f = g + \epsilon h$
 - Anytime A^*
 - Memory issue ($O(n)$) \rightarrow IDA*
 - Bi-directional
- Example Applications
 - (Beginnings of CSPs)
Weighted A* $f = g + \varepsilon h$

- **Weighted A***: expands states in the order of $f = g + \varepsilon h$ values,
 $\varepsilon > 1$ = bias towards states that are closer to goal

Weighted A* $f = g + \varepsilon h : \varepsilon = 0$ --- Uniform Cost Search

Weighted A* $f = g + \varepsilon h : \varepsilon = 1$ --- A*

Weighted A* $f = g + \varepsilon h : \varepsilon > 1$

- Trades off optimality for speed
- ε-suboptimal:
 - cost(solution) $\leq \varepsilon$·cost(optimal solution)
 - Test your understanding by trying to prove this!
- In many domains, it has been shown to be orders of magnitude faster than A*
- Research becomes to develop a heuristic function that has shallow local minima

Anytime A*

- **Weighted A***
 - Trades off optimality for speed
 - ε-suboptimal

- **Anytime A***
 - For $\varepsilon \in \{ \varepsilon_1, \varepsilon_2, \ldots, 1 \}$
 - Run weighted A* with current ε

- [[ARA* and D*]
 - efficient version of above that reuses state values within each iteration]]**
A* Memory Issues

- A* does provably minimum number of expansions (O(n)) for finding a provably optimal solution
- Memory requirements of A* (O(n)) can be improved through
- Memory requirements of weighted A* are often but not always better

IDA* (Iterative Deepening A*)

1. set $f_{max} = 1$ (or some other small value)
2. execute (previously explained) DFS that does not expand states with $h > f_{max}$
3. if DFS returns a path to the goal, return it
4. otherwise, $f_{max} = f_{max} + 1$ (or larger increment) and go to step 2

- Complete and optimal
- Memory: $O(bs)$, where b – max. branching factor, s – search depth of optimal path
- Complexity: $O(kb^s)$, where k is the number of times DFS is called

Bi-directional search

- If only 1 goal state:
 - Can simultaneously run two searches:
 - Search 1 starts at the START state
 - Search 2 starts at the GOAL state
 - to find path from START to GOAL only requires two searches of depth $s/2$ rather than one of depth s
 - $O(b^{s/2})$ vs. $O(b^s)$
- Challenge: think about how to run bidirectional A*

Robotics Examples

- Urban Challenge
 - Successor function?
 - Heuristic?

- Door Opening
 - Successor function?
 - Heuristic?

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- …

Today

- A* (tree) search
 - Admissible heuristics
- Graph search
 - Consistent heuristics
- Extensions
 - Weighted A*: $f = g + \epsilon h$
 - Anytime A*
 - Memory issue (O(n)) → IDA*
- Bi-directional
- Example Applications
 - (Beginnings of CSPs)
What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: X_i,
 - Domains: $\{0, 1\}$
 - Constraints

 \[
 \forall i,j,k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\} \\
 \forall i,j,k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\} \\
 \forall i,j,k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\} \\
 \forall i,j \ X_{ij} = N
 \]

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors

 \[
 WA \neq NT \\
 (WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}
 \]

- Solutions are assignments satisfying all constraints, e.g.

 \[
 \{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}
 \]

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- Variables (circles):
 \[FTUWRX\]
- Domains:
 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 alldiff(F, T, U, W, R, O)
 \[O \mid O = R \mid 10 \cdot X_1\]
 \ldots

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1, 2, \ldots, 9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP
 \[?\]
- Look at all intersections
- Adjacent intersections impose constraints on each other

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size of means \(\mathcal{O}(d^n)\) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start-end state of a robot
 - Linear constraints solvable in polynomial time by LP methods
 (see CS170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq \text{green}\]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA\]
 - Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!
- Many real-world problems involve real-valued variables…