Machine Learning

- Up until now: how to reason in a model and how to make optimal decisions
- Machine learning: how to acquire a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

Machine Learning This Set of Slides

- Applications
- Naïve Bayes
- Main concepts
- Perceptron

Example: Spam Filter

- Input: email
- Output: spam/ham
- Setup:
 - Get a large collection of example emails, each labeled “spam” or “ham”
 - Note: someone has to hand label all this data
 - Want to learn to predict labels of new, future emails
- Features: The attributes used to make the ham / spam decision
 - Words: FREE!
 - Text Patterns: $dd, CAPS
 - Non-text: SenderInContacts

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9
- Setup:
 - Get a large collection of example images, each labeled with a digit
 - Note: someone has to hand label all this data
 - Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the digit decision
 - Pixels: (i,j)=ON
 - Shape Patterns: NumComponents,AspectRatio, NumLoops

Other Classification Tasks

- In classification, we predict labels y (classes) for inputs x
- Examples:
 - Spam detection (input: document, classes: spam / ham)
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grader (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - … many more
- Classification is an important commercial technology!
Bayes Nets for Classification

- One method of classification:
 - Use a probabilistic model!
 - Features are observed random variables F_i
 - Y is the query variable
 - Use probabilistic inference to compute most likely Y

$$y = \arg\max_y P(y|f_1 \ldots f_n)$$

- You already know how to do this inference

General Naïve Bayes

- A general naïve Bayes model:

\[
P(Y, F_1 \ldots F_n) = P(Y) \prod_i P(F_i|Y)
\]

- We only specify how each feature depends on the class
- Total number of parameters is linear in n

Inference for Naïve Bayes

- Goal: compute posterior over causes
 - Step 1: get joint probability of causes and evidence
 - Step 2: get probability of evidence
 - Step 3: renormalize

Naïve Bayes for Digits

- Simple version:
 - One feature F_{ij} for each grid position $<i,j>$
 - Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.

\[
\begin{aligned}
F_{0,0} &= 1 \\
F_{0,1} &= 0 \\
F_{0,2} &= 0 \\
F_{1,0} &= 1 \\
F_{1,1} &= 0 \\
\end{aligned}
\]

- Here: lots of features, each is binary valued

- Naïve Bayes model:

\[
P(Y|F_{0,0} \ldots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{ij}|Y)
\]

- What do we need to learn?

A Digit Recognizer

- Input: pixel grids
- Output: a digit 0-9

Examples: CPTs

\[
P(Y|F_{0,0} \ldots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{ij}|Y)
\]
Naïve Bayes for Text

- **Bag-of-Words Naïve Bayes:**
 - Predict unknown class label (spam vs. ham)
 - Assume evidence features (e.g., the words) are independent
 - Warning: subtly different assumptions than before!

- **Generative model**
 \[P(Y; W_1 \ldots W_n) = P(Y) \prod_i P(W_i | Y) \]

- **Tied distributions and bag-of-words**
 - Usually, each variable gets its own conditional probability distribution \(P(F|Y)\)
 - In a bag-of-words model
 - Each position is identically distributed
 - All positions share the same conditional probs \(P(W|C)\)
 - Why make this assumption?
 - Word at position \(i\), not \(i^{th}\) word in the dictionary!

Example: Overfitting

- Posterior determined by relative probabilities (odds ratios):
 \[
 \frac{P(W|h) \cdot P(Y)}{P(W|s) \cdot P(Y)}
 \]
 | south-west | : inf |
 | nation | : inf |
 | morally | : inf |
 | nicely | : inf |
 | extent | : inf |
 | seriously | : inf |
 | ... | ... |

 What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15, 15) on during training doesn’t mean we won’t see it at test time
 - Unlikely that every occurrence of “minute” is 100% spam
 - What about all the words that don’t occur in the training set at all?
 - In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn’t generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn’t enough

Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it’s heads, what’s the estimate for \(P(\text{heads})\)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

- Basic idea:
 - We have some prior expectation about parameters (here, the probability of heads)
 - Given little evidence, we should skew towards our prior
 - Given a lot of evidence, we should listen to the data

\[
\hat{\theta}_{ML} = \arg \max_{\theta} P(X|\theta) = \frac{\text{count}(x)}{\text{total samples}}
\]

- In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

\[
\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|X) = \frac{\arg \max_{\theta} P(X|\theta)P(\theta)}{P(X)} \quad ???
\]

\[
= \arg \max_{\theta} P(X|\theta)P(\theta)
\]
Estimation: Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did
 \[
P_{LAP}(x) = \frac{c(x) + 1}{\sum_c c(x) + 1}
 \]
 \[
P_{ML}(X) = \frac{c(x) + 1}{N + |X|}
 \]
 - Can derive this as a MAP estimate with Dirichlet priors (see cs281a)

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large

- Another option: linear interpolation
 - Also get P(X) from the data
 - Make sure the estimate of P(X|Y) isn’t too different from P(X)
 \[
P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)
 \]
 - What if \(\alpha \) is 0? 1?

Real NB: Smoothing

- For real classification problems, smoothing is critical

- New odds ratios:
 - \[
P(W|ham) / P(W|spam) = \frac{c(x,y) + k}{c(y) + k|X|}
 \]
 - \[
P(W|spam) / P(W|ham) = \frac{c(x,y) + k}{c(y) + k|X|}
 \]

Do these make more sense?

Tuning on Held-Out Data

- Now we’ve got two kinds of unknowns
 - Parameters: the probabilities P(Y|X), P(Y)
 - Hyperparameters, like the amount of smoothing to do: k, α

- Where to learn?
 - Learn parameters from training data
 - Must tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the held-out data

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held-out set
 - Test set

- Features: attribute-value pairs which characterize each x
 - Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never “peek” at the test set

- Evaluation
 - Accuracy: fraction of instances predicted correctly
 - Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
Generative vs. Discriminative

- Generative classifiers:
 - E.g. naïve Bayes
 - A probabilistic model with evidence variables
 - Query model for class variable given evidence

- Discriminative classifiers:
 - No generative model, no Bayes rule, often no probabilities at all!
 - Try to predict the label \(Y \) directly from \(X \)
 - Robust, accurate with varied features
 - Loosely: mistake driven rather than model driven

Binary Linear Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to \(Y = +1 \)
 - Other corresponds to \(Y = -1 \)

- Dot product \(w \cdot f \) positive means the positive class

Binary Perceptron Update

- Start with zero weights
- For each training instance:
 - Classify with current weights
 - If correct (i.e., \(y = y^* \)), no change!
 - If wrong: adjust the weight vector
 by adding or subtracting the feature vector. Subtract if \(y^* \) is -1.

Example Exercise --- Which Category is Chosen?

- "win the vote"

Multiclass Linear Decision Rule

- If we have multiple classes:
 - A weight vector for each class:
 \(w_y \)
 - Score (activation) of a class \(y \):
 \(w_y \cdot f(x) \)
 - Prediction highest score wins
 \(y = \arg \max_y w_y \cdot f(x) \)

- \(w \) = multiclass where the negative class has weight zero

Multiclass Linear Decision Rule

- If we have multiple classes:
 - A weight vector for each class:
 \(w_y \)
 - Score (activation) of a class \(y \):
 \(w_y \cdot f(x) \)
 - Prediction highest score wins
 \(y = \arg \max_y w_y \cdot f(x) \)
Learning Multiclass Perceptron

- Start with zero weights
- Pick up training instances one by one
- Classify with current weights
 \[y = \arg\max_y w_y \cdot f(x) \]
 \[y^{*} = \arg\max_y \sum_i w_{yi} \cdot f_i(x) \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
 \[w_y = w_y - f(x) \]
 \[w_{y^{*}} = w_{y^{*}} + f(x) \]

Example

"win the vote"
"win the election"
"win the game"

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability
 \[\text{mistakes} < \frac{k}{\delta^2} \]

Examples: Perceptron

- Separable Case

Problems with the Perceptron

- Noise: if the data isn’t separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a ‘barely’ separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
 \[\min_{w} \frac{1}{2} \sum_y ||w_y - w_{y^{*}}||^2 \]
 \[w_{y^{*}} \cdot f(x) \geq w_y \cdot f(x) + 1 \]
 \[w_y = w_y^{*} - \tau f(x) \]
 \[w_{y^{*}} = w_{y^{*}} + \tau f(x) \]
* Margin Infused Relaxed Algorithm
Minimum Correcting Update

\[
\min \frac{1}{2} \sum \|w_y - w'_y\|^2 \\
\text{s.t. } w_y \cdot f \geq w'_y \cdot f + 1
\]

\[
w_y = w'_y - \tau f(x) \\
w_y = w'_y + \tau f(x)
\]

\[\min \|\tau f\|^2 \\
\text{s.t. } w_y \cdot f \geq w'_y \cdot f + 1
\]

\[\tau = \frac{(w'_y - \tau f) \cdot f + 1}{2f \cdot f}
\]

Min not \(\tau\neq 0\), or would not have made an error, so \(\min\) will be where equality holds

Maximum Step Size

- In practice, it’s also bad to make updates that are too large
- Example may be labeled incorrectly
- You may not have enough features
- Solution: cap the maximum possible value of \(\tau\) with some constant \(C\)

\[\tau^* = \min \left(\frac{(w'_y - w''_y) \cdot f + 1}{2f \cdot f}, C\right)
\]

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data

Extension: Web Search

- Information retrieval:
 - Given information needs, produce information
 - Includes, e.g. web search, question answering, and classic IR
- Web search: not exactly classification, but rather ranking

Feature-Based Ranking

\[x = \text{"Apple Computers"}
\]

\[f(x) = [0.3 \ 5 \ 0 \ 0 \ldots]
\]

\[f(x) = [0.8 \ 4 \ 2 \ 1 \ldots]
\]

Now features depend on query and webpage.
E.g.: "times word1 in query occurs, "times word2 in query occurs, "times all words in query occur in sequence, page rank

Perceptron for Ranking

- Inputs \(x\)
- Candidates \(y\)
- Many feature vectors: \(f(x, y)\)
- One weight vector: \(w\)
 - Prediction:
 \[y = \arg \max_y w \cdot f(x, y)
 \]
 - Update (if wrong):
 \[w = w + f(x, y^*) - f(x, y)
 \]

Classification: Comparison

- Naïve Bayes
 - Builds a model training data
 - Gives prediction probabilities
 - Strong assumptions about feature independence
 - One pass through data (counting)
- Perceptrons / MIRA:
 - Makes less assumptions about data
 - Mistake-driven learning
 - Multiple passes through data (prediction)
 - Often more accurate