Recap Search I

- Agents that plan ahead → formalization: Search
- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)

Recap Search II

- Tree Search vs. Graph Search
- Priority queue to store fringe: different priority functions → different search method
 - Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
 - Heuristic Search Methods
 - Greedy Search
 - A* Search → heuristic design
 - Heuristics: try to estimate cost of cheapest path to a goal state. Ensure the heuristic is admissible: h(n) ≤ cost of cheapest path to a goal state.
- Time and space complexity, completeness, optimality
- Iterative Deepening (great space complexity!)

Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world’s current state
- Do not consider the future consequences of their actions
- Act on how the world IS
- Can a reflex agent be rational?
- Plan ahead
- Ask “what if”
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Act on how the world WOULD BE

Goal-based Agents

Search Problems

- A search problem consists of:
 - A state space
 - A successor function
 - A start state and a goal test
 - A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Example State Space Graph

Ridiculously tiny search graph for a tiny search problem
Search Trees

- A search tree:
 - This is a "what if" tree of plans and outcomes
 - Start state at the root node
 - Children correspond to successors
 - Nodes contain states, correspond to PLANS to those states
 - For most problems, we can never actually build the whole tree

General Tree Search

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy

 - Main question: which fringe nodes to explore?

Graph Search

- Very simple fix: never expand a state twice

 - Can this wreck completeness? Optimality?

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Admissible Heuristics

- A heuristic \(h \) is admissible (optimistic) if:
 \[h(n) \leq h^*(n) \]
 where \(h^*(n) \) is the true cost to a nearest goal

- Often, admissible heuristics are solutions to relaxed problems, with new actions ("some cheating") available

Examples:

 - Number of misplaced tiles
 - Sum over all misplaced tiles of Manhattan distances to goal positions

Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_b \) if
 \[\forall n : h_a(n) \geq h_b(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]
 - Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Consistency

- Consistency: \(c(n, a, n') \geq h(n) - h(n') \)
- Required for A* graph search to be optimal
 - It ensures that when a node gets expanded, that node’s final state was reached along the shortest path to reach that final state
- Consistency implies admissibility

A* heuristics

- A particular procedure to quickly find a perhaps suboptimal solution to the search problem is in general not admissible.
 - It is only admissible if it always finds the optimal solution (but then it is already solving the problem we care about, hence not that interesting as a heuristic).
- A particular procedure to quickly find a perhaps suboptimal solution to a relaxed version of the search problem need not be admissible.
 - It will be admissible if it always finds the optimal solution to the relaxed problem.

Recap CSPs

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search (why?, tree or graph search?) with
 - Branching on only one variable per layer in search tree
 - Incremental constraint checks (“Fail fast”)
- Heuristics at our points of choice to improve running time:
 - Ordering variables: Minimum Remaining Values and Degree Heuristic
 - Ordering of values: Least Constraining Value
 - Filtering: forward checking, arc consistency
 - Computation of heuristics + pruning of domains might lead to early realization need to backtrack
- Structure: Disconnected and tree-structured CSPs are efficient
 - Non-tree-structured CSP can become tree-structured after some variables have been assigned values
 - Iterative improvement: min-conflicts is usually effective in practice

Example: Map-Coloring

- Variables: \(WA, NT, Q, NSW, V, SA, T \)
- Domain: \(D = \{ \text{red}, \text{green}, \text{blue} \} \)
- Constraints: adjacent regions must have different colors
 - Implicit: \(WA \neq NT \)
 - Explicit: \(\{WA, NT\} \in \{ (\text{red}, \text{green}), (\text{red}, \text{blue}), (\text{green}, \text{red}), \ldots \} \)
- Solutions are assignments satisfying all constraints, e.g.:
 \[
 \begin{align*}
 &WA = \text{red}, NT = \text{green}, Q = \text{red}, \\
 &NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}
 \end{align*}
 \]

Consistency of An Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint
- If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
- Arc consistency detects failure earlier than forward checking, but more work!
- Can be run as a preprocessor or after each assignment
- Forward checking = Enforcing consistency of each arc pointing to the new assignment
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time.
- Compare to general CSPs, where worst-case time is $O(d^n)$.
- This property also applies to probabilistic reasoning (later): an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains.
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree.
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c.

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
 - What’s good about it?

Recap Games

- Want algorithms for calculating a strategy (policy) which recommends a move in each state.
- Deterministic zero-sum games
 - Minimax
 - Alpha-Beta pruning:
 - speed-up up to: $O(d^2) \rightarrow O(d^{3/2})$
 - exact for root (lower nodes could be approximate)
 - Speed-up (suboptimal): Limited depth and evaluation functions
 - Iterative deepening (can help alpha-beta through ordering!)
- Stochastic games
 - Expectimax
- Non-zero-sum games
Minimax Properties

- Optimal against a perfect player. Otherwise?
- Time complexity?
 - $O(b^m)$
- Space complexity?
 - $O(bm)$
- For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Time complexity?

Space complexity?

For chess, $b \approx 35$, $m \approx 100$

Exact solution is completely infeasible

But, do we need to explore the whole tree?

Evaluation Functions

- With depth-limited search
 - Partial plan is returned
 - Only first move of partial plan is executed
 - When again maximizer’s turn, run a depth-limited search again and repeat

How deep to search?

Pruning

Expectimax

Stochastic Two-Player

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

Non-Zero-Sum Utilities

- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility and propagate (or back up) nodes from children
 - Can give rise to cooperation and competition dynamically...