CS 188: Artificial Intelligence

Review of Utility, MDPs, RL, Bayes’ nets

DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered. You need to study all materials covered in lecture, section, assignments and projects!

Pieter Abbeel – UC Berkeley
Many slides adapted from Dan Klein

Preferences

- An agent must have preferences among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes

\[L = [p, A; (1 - p), B] \]

- Notation:
 \[A \succ B \quad A \text{ preferred over } B \]
 \[A \sim B \quad \text{indifference between } A \text{ and } B \]
 \[A \succeq B \quad B \text{ not preferred over } A \]
Rational Preferences

- Preferences of a rational agent must obey constraints.
 - The axioms of rationality:
 - Orderability
 \[(A \succ B) \lor (B \succ A) \lor (A \sim B)\]
 - Transitivity
 \[(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)\]
 - Continuity
 \[A \succ B \succ C \Rightarrow \exists p \ [p, A; 1 - p, C] \sim B\]
 - Substitutability
 \[A \sim B \Rightarrow [p, A; 1 - p, C] \sim [p, B; 1 - p, C]\]
 - Monotonicity
 \[A \succ B \Rightarrow (p \geq q \iff [p, A; 1 - p, B] \succeq [q, A; 1 - q, B])\]

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function \(U\) such that:
 \[U(A) \geq U(B) \iff A \succeq B\]
 \[U([p_1, S_1; \ldots ; p_n, S_n]) = \sum_i p_i U(S_i)\]

- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe, reflex vacuum cleaner
Recap MDPs and RL

- **Markov Decision Processes (MDPs)**
 - Formalism: \((S, A, T, R, \gamma) \)
 - Solution: policy \(\pi \) which describes action for each state
 - Value Iteration (vs. Expectimax --- VI more efficient through dynamic programming)
 - Policy Evaluation and Policy Iteration

- **Reinforcement Learning (don’t know \(T \) and \(R \))**
 - Model-based Learning: estimate \(T \) and \(R \) first
 - Model-free Learning: learn without estimating \(T \) or \(R \)
 - Direct Evaluation [performs policy evaluation]
 - Temporal Difference Learning [performs policy evaluation]
 - Q-Learning [learns optimal state-action value function \(Q^* \)]
 - Policy Search [learns optimal policy from subset of all policies]
 - Exploration
 - Function approximation --- generalization

Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Prob that \(a \) from \(s \) leads to \(s' \)
 - i.e., \(P(s' | s, a) \)
 - Also called the model
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don’t know the transition or reward functions
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means:
 \[P(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots, S_0 = s_0) = P(S_{t+1} = s'|S_t = s_t, A_t = a_t) \]

- Can make this happen by proper choice of state space.

Value Iteration

- Idea:
 - \(V_i(s) \): the expected discounted sum of rewards accumulated when starting from state \(s \) and acting optimally for a horizon of \(i \) time steps.

- Value iteration:
 - Start with \(V_0(s) = 0 \), which we know is right (why?)
 - Given \(V_i \), calculate the values for all states for horizon \(i+1 \):
 \[
 V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]
 \]
 - This is called a value update or Bellman update.
 - Repeat until convergence.

- Theorem: will converge to unique optimal values.
 - Basic idea: approximations get refined towards optimal values.
 - Policy may converge long before values do.
 - At convergence, we have found the optimal value function \(V^* \) for the discounted infinite horizon problem, which satisfies the Bellman equations:
 \[
 \forall s \in S : \quad V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]
Complete Procedure

- 1. Run value iteration (off-line)
 - This results in finding V^*

- 2. Agent acts. At time t the agent is in state s_t and takes the action a_t:

$$\arg \max_a \sum_{s'} T(s_t, a, s')[R(s_t, a, s') + \gamma V^*(s')]$$

Policy Iteration

- Policy evaluation: with fixed current policy π_i, find values with simplified Bellman updates:
 - Iterate for $i = 0, 1, 2, \ldots$ until values converge

$$\forall s : V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

- Will converge (policy will not change) and resulting policy optimal
Sample-Based Policy Evaluation?

\[V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_i^{\pi}(s') \right] \]

- Who needs T and R? Approximate the expectation with samples (drawn from T!)

\[
\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_i^{\pi}(s'_1) \\
\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_i^{\pi}(s'_2) \\
\vdots \\
\text{sample}_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k) \\
V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} \text{sample}_i
\]

Almost! (i) Will only be in state s once and then land in s' hence have only one sample \(\rightarrow \) have to keep all samples around? (ii) Where do we get value for s'?

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience \((s,a,s',r)\)
 - Likely s' will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of V(s):

\[\text{sample} = R(s, \pi(s), s') + \gamma V^{\pi}(s') \]

Update to V(s):

\[V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + \alpha \text{sample} \]

Same update:

\[V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (\text{sample} - V^{\pi}(s)) \]
Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important
 \[
 \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
 \]
 - Forgets about the past (distant past values were wrong anyway)
 - Easy to compute from the running average
 \[
 \bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n
 \]
 - Decreasing learning rate can give converging averages

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with \(V_0(s) = 0 \), which we know is right (why?)
 - Given \(V_i \), calculate the values for all states for depth \(i+1 \):
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
 \]
 - But Q-values are more useful!
 - Start with \(Q_0(s, a) = 0 \), which we know is right (why?)
 - Given \(Q_i \), calculate the q-values for all q-states for depth \(i+1 \):
 \[
 Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
 \]
Q-Learning

- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your new sample estimate:
 \[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right] \]
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \text{[sample]} \]
 - Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough but not decrease it too quickly!
- Neat property: off-policy learning
 - learn optimal policy without following it

Exploration Functions

- Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
- Exploration functions
 - Explore areas whose badness is not (yet) established
 - Take a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \) (exact form not important)
 - \(Q_{i+1}(s, a) \leftarrow (1 - \alpha)Q_i(s, a) + \alpha \left(R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right) \)
 - now becomes:
 \[Q_{i+1}(s, a) \leftarrow (1 - \alpha)Q_i(s, a) + \alpha \left(R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a')) \right) \]
Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \(1 / (\text{dist to dot})^2\)
 - Is Pacman in a tunnel? (0/1)
 - …… etc.
 - Can also describe a q-state \((s, a)\) with features (e.g. action moves closer to food)

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!
Overfitting

Degree 15 polynomial

Policy Search

- Problem: often the feature-based policies that work well aren’t the ones that approximate V/Q best
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter
- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical