CS 188: Artificial Intelligence

Review of Utility, MDPs, RL, Bayes’ nets

DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered. You need to study all materials covered in lecture, section, assignments and projects!

Pieter Abbeel – UC Berkeley
Many slides adapted from Dan Klein

Preferences

- An agent must have preferences among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes
 \[L = [p, A; (1-p), B] \]

- Notation:
 - \(A > B \) \(A \) preferred over \(B \)
 - \(A \sim B \) indifference between \(A \) and \(B \)
 - \(A \geq B \) \(B \) not preferred over \(A \)

Rational Preferences

- Preferences of a rational agent must obey constraints.
- The axioms of rationality:
 - Orderability
 \((A > B) \land (B > A) \land (A \sim B) \)
 - Transitivity
 \((A > B) \land (B > C) \Rightarrow (A > C) \)
 - Continuity
 \(A > B \Rightarrow \exists [p, A; 1-p, C] > B \)
 - Substitutability
 \(A > B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C] \)
 - Monotonicity
 \(q > p \Rightarrow [p, A; 1-p, B] > [q, A; 1-q, B] \)

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - \([\text{Ramsey, 1931; von Neumann & Morgenstern, 1944}]\)
 - Given any preferences satisfying these constraints, there exists a real-valued function \(U \) such that:
 \[U(A) \geq U(B) \Leftrightarrow A \geq B \]
 \[U([p_1, S_1; \cdots; p_n, S_n]) = \sum p_i U(S_i) \]

- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tactoe, reflex vacuum cleaner

Recap MDPs and RL

- Markov Decision Processes (MDPs)
 - Formalism (S, A, T, R, gamma)
 - Solution: policy \(\pi \) which describes action for each state
 - Value Iteration (vs. Expectimax — VI more efficient through dynamic programming)
 - Policy Evaluation and Policy Iteration

- Reinforcement Learning (don’t know \(T \) and \(R \))
 - Model-based Learning: estimate \(T \) and \(R \) first
 - Model-free Learning: learn without estimating \(T \) or \(R \)
 - Direct Evaluation [performs policy evaluation]
 - Temporal Difference Learning [performs policy evaluation]
 - Q-Learning [learns optimal state-action value function \(Q* \)]
 - Policy Search [learns optimal policy from subset of all policies]
 - Exploration
 - Function approximation — generalization

Markov Decision Processes

- An MDP is defined by:
 - A set of states \(S \)
 - A set of actions \(A(s,a,s') \)
 - A transition function \(T(s,a,s') \): \(P(s' | s,a) \)
 - Also called the model
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s) \)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where one does not know the transition or reward functions
What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:
 \[P(S_{t+1} = s'|S_t = s, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots, S_0 = s_0) = P(S_{t+1} = s'|S_t = s, A_t = a_t) \]
- Can make this happen by proper choice of state space

Value Iteration

- Idea:
 \[V^*(s) : \text{the expected discounted sum of rewards accumulated when}\]
 \[\text{starting from state } s \text{ and acting optimally for a horizon of } i \text{ time steps.} \]
- Value iteration:
 \[V^0(s) = 0, \text{which we know is right (why?)} \]
 \[\text{Given } V^i, \text{calculate the values for all states for horizon } i+1: \]
 \[V^i_{t+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^i(s') \right] \]
- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
 - At convergence, we have found the optimal value function \(V^* \) for the
discounted infinite horizon problem, which satisfies the Bellman equations:
 \[\forall s \in S: \quad V^*(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \]

Policy Iteration

- Policy evaluation: with fixed current policy \(\pi \), find values
 with simplified Bellman updates:
 \[\text{Iterate for } i = 0, 1, 2, \ldots \text{until values converge} \]
- Policy improvement: with fixed utilities, find the best
 action according to one-step look-ahead
 \[\pi_{t+1}(s) = \arg \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*_t(s') \right] \]
- Will converge (policy will not change) and resulting policy
 optimal

Complete Procedure

1. Run value iteration (off-line)
 - This results in finding \(V^* \)
2. Agent acts. At time \(t \) the agent is in state \(s_t \)
 and takes the action \(a_t \):
 \[\text{arg max}_a \sum_{s'} T(s_t, a_t, s') R(s_t, a_t, s') + \gamma V^*(s') \]

Policy Iteration

- Policy evaluation: with fixed current policy \(\pi \), find values
 with simplified Bellman updates:
 \[\text{Iterate for } i = 0, 1, 2, \ldots \text{until values converge} \]
- Policy improvement: with fixed utilities, find the best
 action according to one-step look-ahead
 \[\pi_{t+1}(s) = \arg \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*_t(s') \right] \]
- Will converge (policy will not change) and resulting policy
 optimal

Sample-Based Policy Evaluation?

- \[V^*_{t+1}(s) \leftarrow \sum_{s'} T(s_t, \pi(s), s') \left[R(s_t, \pi(s), s') + \gamma V^*_t(s') \right] \]
- Who needs \(T \) and \(R \)? Approximate the
 expectation with samples (drawn from \(T! \))
 \[\text{Sample}_1 = R(s_t, \pi(s_t), s'_1) + \gamma V^*_t(s'_1) \]
 \[\text{Sample}_2 = R(s_t, \pi(s_t), s'_2) + \gamma V^*_t(s'_2) \]
 \[\text{Sample}_k = R(s_t, \pi(s_t), s'_k) + \gamma V^*_t(s'_k) \]
 \[V^*_{t+1}(s) \leftarrow \frac{1}{k} \sum_{i} \text{Sample}_i \]

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update \(V(s) \) each time we experience \((s,a,s',r) \)
 - Likely \(s' \) will contribute updates more often
- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!
 \[V^+(s) \leftarrow (1 - \alpha) V^+(s) + \alpha \text{Sample} \]
 \[V^-(s) \leftarrow V^-(s) + \alpha (\text{Sample} - V^-(s)) \]

Sample of V(s):

Sample of V(s):

Update to V(s):

Same update:

\[V^+(s) \leftarrow (1 - \alpha) V^+(s) + \alpha \text{Sample} \]
\[V^-(s) \leftarrow V^-(s) + \alpha (\text{Sample} - V^-(s)) \]
Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
 - Easy to compute from the running average
 - Decreasing learning rate can give converging averages

\[
\tilde{x}_n = \frac{x_n + (1 - \alpha) \cdot \tilde{x}_{n-1} + (1 - \alpha)^2 \cdot \tilde{x}_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
\]

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with \(V_i(s) = 0 \), which we know is right (why?)
 - Given \(V_i \), calculate the values for all states for depth \(i+1 \):

\[
V_{i+1}(s) = \max_{a'} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
\]

- But Q-values are more useful!
 - Start with \(Q_0(s, a) = 0 \), which we know is right (why?)
 - Given \(Q_i \), calculate the q-values for all q-states for depth \(i+1 \):

\[
Q_{i+1}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
\]

Q-Learning

- Learn \(Q^*(s, a) \) values
 - Receive a sample \((s, a, s', r) \)
 - Consider your new sample estimate:

\[
Q_i(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
\]

- Incorporate the new estimate into a running average:

\[
Q(s, a) \leftarrow (1 - \alpha) Q(s, a) + \alpha \cdot \text{sample}
\]

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough but not decrease it too quickly!

- Neat property: off-policy learning
 - learn optimal policy without following it

Exploration Functions

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability \(\epsilon \), act randomly
 - With probability \(1 - \epsilon \), act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower \(\epsilon \) over time

- Exploration functions
 - Explore areas whose badness is not (yet) established
 - Take a value estimate and a count, and returns an optimistic utility, e.g. \(f(Q_i(s', a'), N(s', a')) \), now becomes:

\[
Q_{i+1}(s, a) \leftarrow (1 - \alpha) Q_i(s, a) + \alpha \left(R(s, a, s') + \gamma \max_{a'} Q_i(s', a') + \epsilon \cdot f(Q_i(s', a'), N(s', a')) \right)
\]

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 if dot is dead?
 - Is Pacman in a tunnel? (0/1)
 - … etc.
 - Can also describe a q-state \((s, a)\) with features (e.g. action moves closer to food)

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[
V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

\[
Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
\]

- Advantage: our experience is summed up in a few powerful numbers
 - Disadvantage: states may share features but be very different in value!
Policy Search

- Problem: often the feature-based policies that work well aren’t the ones that approximate V / Q best
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter
- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical