Reminder

- Only a very small fraction of AI is about making computers play games intelligently
- Recall: computer vision, natural language, robotics, machine learning, computational biology, etc.
- That being said: games tend to provide relatively simple example settings which are great to illustrate concepts and learn about algorithms which underlie many areas of AI
Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world’s current state
- Do not consider the future consequences of their actions
- Act on how the world IS
- Can a reflex agent be rational?

A reflex agent for pacman

While(food left)
 - Sort the possible directions to move according to the amount of food in each direction
 - Go in the direction with the largest amount of food

4 actions: move North, East, South or West
A reflex agent for pacman (2)

- While(food left)
 - Sort the possible directions to move according to the amount of food in each direction
 - Go in the direction with the largest amount of food

A reflex agent for pacman (3)

- While(food left)
 - Sort the possible directions to move according to the amount of food in each direction
 - Go in the direction with the largest amount of food
 - But, if other options are available, exclude the direction we just came from
A reflex agent for pacman (4)

- While(food left)
 - If can keep going in the current direction, do so
 - Otherwise:
 - Sort directions according to the amount of food
 - Go in the direction with the largest amount of food
 - But, if other options are available, exclude the direction we just came from

A reflex agent for pacman (5)

- While(food left)
 - If can keep going in the current direction, do so
 - Otherwise:
 - Sort directions according to the amount of food
 - Go in the direction with the largest amount of food
 - But, if other options are available, exclude the direction we just came from
Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world’s current state
- Do not consider the future consequences of their actions
- Act on how the world IS
- Can a reflex agent be rational?

Goal-based Agents

- Plan ahead
- Ask “what if”
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Act on how the world WOULD BE

Search Problems

- A search problem consists of:
 - A state space
 - A successor function
 - A start state and a goal test

- A solution is a sequence of actions (a plan) which transforms the start state to a goal state
Example: Romania

- **State space:**
 - Cities

- **Successor function:**
 - Go to adj city with cost = dist

- **Start state:**
 - Arad

- **Goal test:**
 - Is state == Bucharest?

- **Solution?**

What’s in a State Space?

The world state specifies every last detail of the environment.

A search state keeps only the details needed (abstraction).

- **Problem: Pathing**
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- **Problem: Eat-All-Dots**
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - For every search problem, there’s a corresponding state space graph
 - The successor function is represented by arcs

- We can rarely build this graph in memory (so we don’t)

State Space Sizes?

- Search Problem: Eat all of the food
- Pacman positions: $10 \times 12 = 120$
- Food count: 30
Search Trees

- A search tree:
 - This is a “what if” tree of plans and outcomes
 - Start state at the root node
 - Children correspond to successors
 - Nodes contain states, correspond to PLANS to those states
 - For most problems, we can never actually build the whole tree

Another Search Tree

- Search:
 - Expand out possible plans
 - Maintain a fringe of unexpanded plans
 - Try to expand as few tree nodes as possible
General Tree Search

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy

- Main question: which fringe nodes to explore?

```python
function TREE-SEARCH(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
    end
```

Example: Tree Search
State Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the problem graph.

We construct both on demand – and we construct as little as possible.

Review: Depth First (Tree) Search

Strategy: expand deepest node first

Implementation: Fringe is a LIFO stack
Review: Breadth First (Tree) Search

Strategy: expand shallowest node first

Implementation: Fringe is a FIFO queue

Search Tiers

Search Algorithm Properties

- Complete? Guaranteed to find a solution if one exists?
- Optimal? Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

Variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of states in the problem</td>
</tr>
<tr>
<td>b</td>
<td>The average branching factor B (the average number of successors)</td>
</tr>
<tr>
<td>C^*</td>
<td>Cost of least cost solution</td>
</tr>
<tr>
<td>s</td>
<td>Depth of the shallowest solution</td>
</tr>
<tr>
<td>m</td>
<td>Max depth of the search tree</td>
</tr>
</tbody>
</table>
Infinite paths make DFS incomplete…

How can we fix this?

Infinite paths make DFS incomplete…

How can we fix this?

With cycle checking, DFS is complete.*

When is DFS optimal?

* Or graph search – next lecture.
BFS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>O(b^s)</td>
<td>O(bm)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^{s+1})</td>
<td>O(b^{s+1})</td>
</tr>
</tbody>
</table>

- When is BFS optimal?

Comparisons

- When will BFS outperform DFS?
- When will DFS outperform BFS?
Iterative Deepening

Iterative deepening uses DFS as a subroutine:
1. Do a DFS which only searches for paths of length 1 or less.
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>O(b^m)</td>
<td>O(bm)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^{s+1})</td>
<td>O(b^{s+1})</td>
</tr>
<tr>
<td>ID</td>
<td>Y</td>
<td>N*</td>
<td>O(b^{s+1})</td>
<td>O(bs)</td>
</tr>
</tbody>
</table>

Costs on Actions

Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path.
 We will quickly cover an algorithm which does find the least-cost path.
Uniform Cost (Tree) Search

Expand cheapest node first:
Fringe is a priority queue

Priority Queue Refresher

- A priority queue is a data structure in which you can insert and retrieve (key, value) pairs with the following operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pq.push(key, value)</code></td>
<td>inserts (key, value) into the queue.</td>
</tr>
<tr>
<td><code>pq.pop()</code></td>
<td>returns the key with the lowest value, and removes it from the queue.</td>
</tr>
</tbody>
</table>

- You can decrease a key’s priority by pushing it again
- Unlike a regular queue, insertions aren’t constant time, usually $O(\log n)$
- We’ll need priority queues for cost-sensitive search methods
Uniform Cost (Tree) Search

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time (in nodes)</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>O(b^m)</td>
<td>O(bm)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N</td>
<td>O(b^{s+1})</td>
<td>O(b^{s+1})</td>
</tr>
<tr>
<td>UCS</td>
<td>Y*</td>
<td>Y</td>
<td>O(b^{C*/e})</td>
<td>O(b^{C*/e})</td>
</tr>
</tbody>
</table>

* UCS can fail if actions can get arbitrarily cheap

Uniform Cost Issues

- **Remember:** explores increasing cost contours
- **The good:** UCS is complete and optimal!
- **The bad:**
 - Explores options in every “direction”
 - No information about goal location
Uniform Cost Search Example

Search Heuristics

- Any *estimate* of how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance
Example: Heuristic Function

Best First / Greedy Search

- Expand the node that seems closest...

- What can go wrong?
Best First / Greedy Search

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking

- Like DFS in completeness (finite states w/ cycle checking)

Greedy

Uniform Cost
Combining UCS and Greedy

- Uniform-cost orders by path cost, or *backward cost* $g(n)$
- Best-first orders by goal proximity, or *forward cost* $h(n)$

A^* Search orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager

When should A^* terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

- A heuristic h is **admissible** (optimistic) if:
 \[h(n) \leq h^*(n) \]
 where $h^*(n)$ is the true cost to a nearest goal

- Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A*: Blocking

Proof:
- What could go wrong?
- We’d have to have to pop a suboptimal goal G off the fringe before G*
- This can’t happen:
 - Imagine a suboptimal goal G is on the queue
 - Some node n which is a subpath of G* must also be on the fringe (why?)
 - n will be popped before G

\[f(n) = g(n) + h(n) \]
\[g(n) + h(n) \leq g(G^*) \]
\[g(G^*) < g(G) \]
\[g(G) = f(G) \]
\[f(n) < f(G) \]

Properties of A*

Uniform-Cost
\[f(n) = g(n) + h(n) \]
\[g(n) + h(n) \leq g(G^*) \]
\[g(G^*) < g(G) \]
\[g(G) = f(G) \]
\[f(n) < f(G) \]

A*
\[f(n) = g(n) + h(n) \]
\[g(n) + h(n) \leq g(G^*) \]
\[g(G^*) < g(G) \]
\[g(G) = f(G) \]
\[f(n) < f(G) \]
UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Example: Explored States with A*

Heuristic: manhattan distance ignoring walls
<table>
<thead>
<tr>
<th>Comparison</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A star</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to *relaxed problems*, with new actions ("some cheating") available.

- Inadmissible heuristics are often useful too (why?)
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \(h(\text{start}) = 8 \)
- This is a \text{relaxed-problem} heuristic

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length...</th>
<th>UCS</th>
<th>TILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 steps</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>8 steps</td>
<td>6,300</td>
<td>39</td>
</tr>
<tr>
<td>12 steps</td>
<td>(3.6 \times 10^6)</td>
<td>227</td>
</tr>
</tbody>
</table>
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?

\[h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \]

<table>
<thead>
<tr>
<th>TILES</th>
<th>13</th>
<th>39</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node!
Trivial Heuristics, Dominance

- Dominance: $h_a \geq h_c$ if
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]
 - Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- …
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- Idea: never expand a state twice

- How to implement:
 - Tree search + list of expanded states (closed list)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new

- Python trick: store the closed list as a set, not a list

- Can graph search wreck completeness? Why/why not?

- How about optimality?

Graph Search

- Very simple fix: never expand a state twice

```
function Graph-Search(problem, fringe) returns a solution, or failure
  closed — an empty set
  fringe — INSERT(Make-Node(INITIAL-STATE[problem]), fringe)
  loop do
    if fringe is empty then return failure
    node — REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE[node] is not in closed then
      add STATE[node] to closed
      fringe — INSERT-ALL(Expand(node, problem), fringe)
  end
```

- Can this wreck completeness? Optimality?
Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to G^* that would have been in queue aren’t, because some worse n' for the same state as some n was dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor which was on the queue when n' was expanded
- Assume $f(p) < f(n)$
- $f(n) < f(n')$ because n' is suboptimal
- p would have been expanded before n'
- So n would have been expanded before n', too
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node n, and find its child n' to have lower f value?
- YES:

 - What can we require to prevent these inversions?
 - Consistency: $c(n, a, n') \geq h(n) - h(n')$
 - Real cost must always exceed reduction in heuristic
A* Graph Search Gone Wrong

State space graph

Search tree

C is already in the closed-list, hence not placed in the priority queue

Consistency

The story on Consistency:
• Definition:
 \(\text{cost(A to C)} + h(C) \geq h(A) \)
• Consequence in search tree:
 Two nodes along a path: \(N_A, N_C \)
 \(g(N_C) = g(N_A) + \text{cost(A to C)} \)
 \(g(N_C) + h(C) \geq g(N_A) + h(A) \)
• The f value along a path never decreases
• Non-decreasing f means you’re optimal to every state (not just goals)
Optimality Summary

- **Tree search:**
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- **Consistency implies admissibility**
 - Challenge: Try to prove this.
 - Hint: try to prove the equivalent statement *not admissible implies not consistent*

- In general, natural admissible heuristics tend to be consistent

- Remember, costs are always positive in search!

Summary: A*

- A* uses both backward costs and (estimates of) forward costs

- A* is optimal with admissible heuristics

- Heuristic design is key: often use relaxed problems
A* Memory Issues → IDA*

IDA* (Iterative Deepening A*)

1. set $f_{\text{max}} = 1$ (or some other small value)
2. Execute DFS that does not expand states with $f > f_{\text{max}}$
3. If DFS returns a path to the goal, return it
4. Otherwise $f_{\text{max}} = f_{\text{max}} + 1$ (or larger increment) and go to step 2

- Complete and optimal
- Memory: $O(bs)$, where b – max. branching factor, s – search depth of optimal path
- Complexity: $O(kb^s)$, where k is the number of times DFS is called

Recap Search I

- Agents that plan ahead → formalization: Search
- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
Recap Search II

- Tree Search vs. Graph Search
- Priority queue to store fringe: different priority functions → different search method
 - Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
 - Heuristic Search Methods
 - Greedy Search
 - A* Search → heuristic design!
 - Admissibility: \(h(n) \leq \text{cost of cheapest path to a goal state} \). Ensures when goal node is expanded, no other partial plans on fringe could be extended into a cheaper path to a goal state.
 - Consistency: \(c(n \rightarrow n') \geq h(n) - h(n') \). Ensures when any node \(n \) is expanded during graph search the partial plan that ended in \(n \) is the cheapest way to reach \(n \).
- Time and space complexity, completeness, optimality
- Iterative Deepening: enables to retain optimality with little computational overhead and better space complexity