Reminder

- Only a very small fraction of AI is about making computers play games intelligently.
- Recall: computer vision, natural language, robotics, machine learning, computational biology, etc.
- That being said: games tend to provide relatively simple example settings which are great to illustrate concepts and learn about algorithms which underlie many areas of AI.

Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world’s current state
- Do not consider the future consequences of their actions
- Act on how the world IS
- Can a reflex agent be rational?

A reflex agent for pacman

- While(food left)
 - Sort the possible directions to move according to the amount of food in each direction
 - Go in the direction with the largest amount of food

A reflex agent for pacman (2)

- While(food left)
 - Sort the possible directions to move according to the amount of food in each direction
 - Go in the direction with the largest amount of food

A reflex agent for pacman (3)

- While(food left)
 - Sort the possible directions to move according to the amount of food in each direction
 - Go in the direction with the largest amount of food
 - But, if other options are available, exclude the direction we just came from
A reflex agent for pacman (4)

- While (food left)
 - If can keep going in the current direction, do so
 - Otherwise:
 - Sort directions according to the amount of food
 - Go in the direction with the largest amount of food
 - But, if other options are available, exclude the direction we just came from

A reflex agent for pacman (5)

- While (food left)
 - If can keep going in the current direction, do so
 - Otherwise:
 - Sort directions according to the amount of food
 - Go in the direction with the largest amount of food
 - But, if other options are available, exclude the direction we just came from

Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world’s current state
- Do not consider the future consequences of their actions
- Act on how the world IS
- Can a reflex agent be rational?

Goal-based Agents

- Plan ahead
- Ask “what if”
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Act on how the world WOULD BE

Search Problems

- A search problem consists of:
 - A state space
 - A successor function
 - A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Example: Romania

- State space:
 - Cities
 - Successor function:
 - Go to adj city with cost = dist
- Start state:
- Goal test:
 - Is state == Bucharest?
- Solution?

What’s in a State Space?

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y) = END

- Problem: Eat-All-Dots
 - States: (x,y), dot booleans
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false
State Space Graphs

- **State space graph:** A mathematical representation of a search problem
 - For every search problem, there’s a corresponding state space graph
 - The successor function is represented by arcs
- We can rarely build this graph in memory (so we don’t)

Ridiculously tiny state space graph for a tiny search problem

State Space Sizes?

- **Search Problem:** Eat all of the food
- Pacman positions: 10 x 12 = 120
- Food count: 30

Search Trees

- **A search tree:**
 - This is a "what if" tree of plans and outcomes
 - Start state at the root node
 - Children correspond to successors
 - Nodes contain states, correspond to PLANS to those states
 - For most problems, we can never actually build the whole tree

Another Search Tree

- **Search:**
 - Expand out possible plans
 - Maintain a fringe of unexpanded plans
 - Try to expand as few tree nodes as possible

General Tree Search

- **Important ideas:**
 - Fringe
 - Expansion
 - Exploration strategy
- **Main question:** which fringe nodes to explore?

Example: Tree Search

Detailed pseudocode is in the book!
We construct both on demand – and we construct as little as possible.

Each NODE in the search tree is an entire PATH in the problem graph.

Strategy: expand deepest node first
Implementation: Fringe is a LIFO stack

Search Algorithm Properties

- Complete? Guaranteed to find a solution if one exists?
- Optimal? Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

Variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of states in the problem</td>
</tr>
<tr>
<td>b</td>
<td>The average branching factor B (the average number of successors)</td>
</tr>
<tr>
<td>C^*</td>
<td>Cost of least cost solution</td>
</tr>
<tr>
<td>s</td>
<td>Depth of the shallowest solution</td>
</tr>
<tr>
<td>m</td>
<td>Max depth of the search tree</td>
</tr>
</tbody>
</table>

DFS

- Infinite paths make DFS incomplete…
- How can we fix this?

DFS w/ Path Checking

- When is DFS optimal?

DFS

- With cycle checking, DFS is complete.*

Algorithm Complete Optimal Time Space
DFS w/ Path Checking Y N O(b^m) O(bm)

DFS

* Or graph search – next lecture.
BFS

When is BFS optimal?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>O(b^m)</td>
<td>O(bm)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^m)</td>
<td>O(bm)</td>
</tr>
</tbody>
</table>

Iterative Deepening

Iterative deepening uses DFS as a subroutine:
1. Do a DFS which only searches for paths of length 1 or less.
2. If "1" failed, do a DFS which only searches paths of length 2 or less.
3. If "2" failed, do a DFS which only searches paths of length 3 or less.
4. ... and so on.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>O(b^m)</td>
<td>O(bm)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^m)</td>
<td>O(bm)</td>
</tr>
<tr>
<td>ID</td>
<td>Y</td>
<td>N*</td>
<td>O(b^m)</td>
<td>O(bm)</td>
</tr>
</tbody>
</table>

Costs on Actions

Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost (Tree) Search

Expand cheapest node first:
Fringe is a priority queue

Cost contours

Priority Queue Refresher

- A priority queue is a data structure in which you can insert and retrieve (key, value) pairs with the following operations:
 - `pq.push(key, value)`: inserts (key, value) into the queue.
 - `pq.pop()`: returns the key with the lowest value, and removes it from the queue.
- You can decrease a key’s priority by pushing it again
- Unlike a regular queue, insertions aren’t constant time, usually $O(\log n)$
- We’ll need priority queues for cost-sensitive search methods

Comparisons

- When will BFS outperform DFS?
- When will DFS outperform BFS?
Uniform Cost (Tree) Search

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time (in nodes)</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>Y</td>
<td>N</td>
<td>O(b^m)</td>
<td>O(hw)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N</td>
<td>O(b^m+1)</td>
<td>O(b^m+1)</td>
</tr>
<tr>
<td>UCS</td>
<td>Y*</td>
<td>Y</td>
<td>O(b^c*)</td>
<td>O(b^c*)</td>
</tr>
</tbody>
</table>

* UCS can fail if actions can get arbitrarily cheap

Uniform Cost Issues

- Remember: explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every direction
 - No information about goal location

Uniform Cost Search Example

Search Heuristics

- Any estimate of how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance

Example: Heuristic Function

Best First / Greedy Search

- Expand the node that seems closest...
- What can go wrong?
Best First / Greedy Search

- **A common case:**
 - Best-first takes you straight to the (wrong) goal.

- **Worst-case:** like a badly-guided DFS in the worst case.
 - Can explore everything.
 - Can get stuck in loops if no cycle checking.

- **Like DFS in completeness (finite states w/ cycle checking)**

Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or backward cost, $g(n)$.
- **Best-first** orders by goal proximity, or forward cost, $h(n)$.

- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$.

When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal.

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:
 \[h(n) \leq h^*(n) \]

 where $h^*(n)$ is the true cost to a nearest goal.

- Examples:
 - Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A*: Blocking

Proof:
- What could go wrong?
- We’d have to have to pop a suboptimal goal G off the fringe before G*
- This can’t happen:
 - Imagine a suboptimal goal G is on the queue
 - Some node n which is a subpath of G* must also be on the fringe (why?)
 - n will be popped before G

Properties of A*

Uniform-Cost vs A*

UCS vs A* Contours

- Uniform-cost expanded in all directions
- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Example: Explored States with A*

Heuristic: manhattan distance ignoring walls

Comparison

Greedy
Uniform Cost
A star

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, with new actions (“some cheating”) available
- Inadmissible heuristics are often useful too (why?)
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length...</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 steps</td>
</tr>
<tr>
<td>8 steps</td>
</tr>
<tr>
<td>12 steps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heuristic: relaxed-problem heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
</tr>
<tr>
<td>TILES</td>
</tr>
</tbody>
</table>

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- $h(\text{start}) = 3 + 1 + 2 + ... = 18$

8 Puzzle III

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: $h_a(n) \geq h_b(n)$, if
 $\forall n : h_a(n) \geq h_b(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 - $h(n) = \max(h_a(n), h_b(n))$
- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- …
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + list of expanded states (closed list)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
- Python trick: store the closed list as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Graph Search

- Very simple fix: never expand a state twice

Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to G* that would have been in queue aren’t, because some worse n’ for the same state as some n was dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor which was on the queue when n’ was expanded
- Assume f(p) < f(n)
- f(n) = f(n’), because n’ is suboptimal
- p would have been expanded before n’
- So n would have been expanded before n’, too
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node n, and find its child n’ to have lower f-value?
- YES:

- What can we require to prevent these inversions?
- Consistency: c(n, a, n’) ≥ h(n) – h(n’)
- Real cost must always exceed reduction in heuristic
A* Graph Search Gone Wrong

State space graph

Search tree

C is already in the closed-list, hence not placed in the priority queue

Consistency

The story on Consistency:
- Definition: \(\text{cost}(A \text{ to } C) + h(C) \geq h(A) \)
- Consequence in search tree:
 Two nodes along a path: \(N, N' \)
 \(g(N') = g(N) + \text{cost}(A \text{ to } C) \)
 \(g(N') + h(C) \geq g(N) + h(A) \)
- The f value along a path never decreases
- Non-decreasing f means you’re optimal to every state (not just goals)

Optimality Summary

- Tree search:
 - \(A^* \) optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (\(h = 0 \))
- Graph search:
 - \(A^* \) optimal if heuristic is consistent
 - UCS optimal (\(h = 0 \) is consistent)
- Consistency implies admissibility
 - Challenge: Try to prove this.
 - Hint: try to prove the equivalent statement not admissible implies not consistent
- In general, natural admissible heuristics tend to be consistent
- Remember, costs are always positive in search!

Summary: A*

- \(A^* \) uses both backward costs and (estimates of) forward costs
- \(A^* \) is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems

A* Memory Issues \(\rightarrow \) IDA*

- IDA* (Iterative Deepening A*)
 1. set \(f_{\max} = 1 \) (or some other small value)
 2. Execute DFS that does not expand states with \(f > f_{\max} \)
 3. If DFS returns a path to the goal, return it
 4. Otherwise \(f_{\max} = f_{\max} + 1 \) (or larger increment) and go to step 2
- Complete and optimal
- Memory: \(O(b^s) \), where \(b \) – max. branching factor, \(s \) – search depth of optimal path
- Complexity: \(O(kb^s) \), where \(k \) is the number of times DFS is called

Recap Search I

- Agents that plan ahead \(\rightarrow \) formalization: Search
- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
Recap Search II

- Tree Search vs. Graph Search
- Priority queue to store fringe: different priority functions \(\rightarrow\) different search method
 - Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
 - Heuristic Search Methods
 - Greedy Search
 - A* Search --- heuristic design
 - Admissibility: \(h(n) \leq c(n)\) cost of cheapest path to a goal state. Ensures when goal node is expanded, no other partial plans on fringe could be extended into a cheaper path to a goal state.
 - Consistency: \(c(n\rightarrow n') \geq h(n) – h(n')\). Ensures when any node \(n\) is expanded during graph search the partial plan that ended in it is the cheapest way to reach it.
- Time and space complexity, completeness, optimality
- Iterative Deepening: enables to retain optimality with little computational overhead and better space complexity