Overview

- Deterministic zero-sum games
 - Minimax
 - Limited depth and evaluation functions for non-terminal states
 - Alpha-Beta pruning
- Stochastic games
 - Single player: expectimax
 - Two player: expectiminimax
- Non-zero-sum games
Game Playing State-of-the-Art

- **Checkers**: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!

- **Chess**: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic.

- **Othello**: Human champions refuse to compete against computers, which are too good.

- **Go**: Human champions are beginning to be challenged by machines, though the best humans still beat the best machines. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves, along with aggressive pruning.

- **Pacman**: unknown

GamesCrafters

http://gamescrafters.berkeley.edu/
Dan Garcia.
Game Playing

- Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?

- Want algorithms for calculating a strategy (policy) which recommends a move in each state

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P=\{1...N\}$ (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $S \times P \rightarrow R$

- Solution for a player is a policy: $S \rightarrow A$
Deterministic Single-Player?

- Deterministic, single player, perfect information:
 - Know the rules
 - Know what actions do
 - Know when you win
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!
- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
- After search, can pick move that leads to best node
- Often: not enough time to search till bottom before taking the next action

Adversarial Games

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result

- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Each node has a minimax value: best achievable utility against a rational adversary

Terminology: ply = all players making a move, game to the right = 1 ply
Computing Minimax Values

- Two recursive functions:
 - `max-value` maxes the values of successors
 - `min-value` mins the values of successors

```python
def value(state):
    if the state is a terminal state: return the state’s utility
    if the next agent is MAX: return max-value(state)
    if the next agent is MIN: return min-value(state)

def max-value(state):
    initialize max = -\infty
    for each successor of state:
        compute value(successor)
        update max accordingly
    return max
```

Minimax Example

```
3 12 8 2 4 6 14 5 2
```
Minimax Properties

- Optimal against a perfect player. Otherwise?

- Time complexity?
 - $O(b^m)$

- Space complexity?
 - $O(bm)$

- For chess, $b = 35$, $m = 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Speeding Up Game Tree Search

- Evaluation functions for non-terminal states
- Pruning: not search parts of the tree
 - Alpha-Beta pruning does so without losing accuracy, $O(b^d) \rightarrow O(b^{d/2})$

Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
Evaluation Functions

- Function which scores non-terminals

![Chess diagrams](image)

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

- e.g. $f_1(s) = (\text{num white queens} - \text{num black queens}), \text{etc.}$

Why Pacman Starves

- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, two here)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!
Evaluation Functions

- With depth-limited search
 - Partial plan is returned
 - Only first move of partial plan is executed
 - When again maximizer’s turn, run a depth-limited search again and repeat

- How deep to search?

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

Why do we want to do this for multiplayer games?

Note: wrongness of eval functions matters less and less the deeper the search goes
Speeding Up Game Tree Search

- Evaluation functions for non-terminal states

- Pruning: not search parts of the tree
 - Alpha-Beta pruning does so without losing accuracy, $O(b^d) \rightarrow O(b^{d/2})$

Minimax Example

```
   10
  /   \
 3     12
 / \
 8   2
/ \ / \ \
4   1 14 5 2
```

Pruning

Alpha-Beta Pruning

- **General configuration**
 - We’re computing the MIN-VALUE at n
 - We’re looping over n’s children
 - n’s value estimate is dropping
 - a is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than a, MAX will avoid it, so can stop considering n’s other children
 - Define b similarly for MIN
Alpha-Beta Pruning Example

Starting a/b

Raising a

Lowering b

Raising a

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above
Alpha-Beta Pseudocode

function Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← −∞
 for a, s in Successors(state) do v ← Max(v, Min-Value(s))
 return v

function Max-Value(state, α, β) returns a utility value
 inputs: state, current state in game
 α, the value of the best alternative for MAX along the path to state
 β, the value of the best alternative for MIN along the path to state
 if Terminal-Test(state) then return Utility(state)
 v ← −∞
 for a, s in Successors(state) do
 v ← Max(v, Min-Value(s, α, β))
 if v ≥ β then return v
 α ← Max(α, v)
 return v

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
- Good child ordering improves effectiveness of pruning
 - Heuristic: order by evaluation function or based on previous search
- With “perfect ordering”: (what is the perfect ordering?)
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)
Action at Root Node

- Values of intermediate nodes might be wrong!

- What if we ask what action to take? Have to be careful!!!
 - Soln. 1: separate alpha-beta for each child of the root node, and we continue to prune with equality
 - Soln. 2: prune with inequality
 - Soln. 3: alter alpha-beta just at the root to only prune with inequality

Expectimax Search Trees

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly

- Can do expectimax search to maximize average score
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children

- Later, we’ll learn how to formalize the underlying problem as a Markov Decision Process (which will in essence make expectimax tree search into expectimax graph search)
Expectimax Pseudocode

```python
def value(s):
    if s is a max node return maxValue(s)
    if s is an exp node return expValue(s)
    if s is a terminal node return evaluation(s)

def maxValue(s):
    values = [value(s') for s' in successors(s)]
    return max(values)

def expValue(s):
    values = [value(s') for s' in successors(s)]
    weights = [probability(s, s') for s' in successors(s)]
    return expectation(values, weights)
```

Expectimax Quantities

![Diagram](image_url)
Expectimax Pruning?

Depth-Limited Expectimax

Estimate of true expectimax value (which would require a lot of work to compute)
What Utilities to Use?

- For minimax, terminal function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations

- For expectimax, we need magnitudes to be meaningful

```
  0  40  20  30
  0 1600 400 900
```

What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
 - For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes

```
Having a probabilistic belief about an agent’s action does not mean that agent is flipping any coins!
```
Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

Example: traffic on freeway?
- Random variable: \(T \) = whether there’s traffic
- Outcomes: \(T \) in \{none, light, heavy\}
- Distribution: \(P(T=\text{none}) = 0.25, P(T=\text{light}) = 0.55, P(T=\text{heavy}) = 0.20 \)

Some laws of probability (more later):
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
- \(P(T=\text{heavy}) = 0.20, P(T=\text{heavy} \mid \text{Hour}=8\text{am}) = 0.60 \)
- We’ll talk about methods for reasoning and updating probabilities later

Reminder: Expectations

- We can define function \(f(X) \) of a random variable \(X \)
- The expected value of a function is its average value, weighted by the probability distribution over inputs

Example: How long to get to the airport?
- Length of driving time as a function of traffic:
 \(L(\text{none}) = 20, L(\text{light}) = 30, L(\text{heavy}) = 60 \)
- What is my expected driving time?
 - Notation: \(E[L(T)] \)
 - Remember, \(P(T) = \{\text{none}: 0.25, \text{light}: 0.5, \text{heavy}: 0.25\} \)
 - \(E[L(T)] = L(\text{none}) \times P(\text{none}) + L(\text{light}) \times P(\text{light}) + L(\text{heavy}) \times P(\text{heavy}) \)
 - \(E[L(T)] = (20 \times 0.25) + (30 \times 0.5) + (60 \times 0.25) = 35 \)
Expectimax for Pacman

- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
- If you take this further, you end up calculating belief distributions over your opponents’ belief distributions over your belief distributions, etc…
 - Can get unmanageable very quickly!

Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 493</td>
<td>Avg. Score: 483</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: -303</td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
Mixed Layer Types

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```
if state is a Max node then
  return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
  return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
  return average of ExpectiMinimax-Value of Successors(state)
```

Stochastic Two-Player

- Dice rolls increase \(b \): 21 possible rolls with 2 dice
 - Backgammon \(\approx 20 \) legal moves
 - Depth \(2 = 20 \times (21 \times 20)^2 = 1.2 \times 10^9 \)
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier…
- TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!
Multi-Agent Utilities

- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility and propagate (or back up) nodes from children
 - Can give rise to cooperation and competition dynamically…

Recap Games

- Want algorithms for calculating a strategy (policy) which recommends a move in each state
- Deterministic zero-sum games
 - Minimax
 - Alpha-Beta pruning (retains optimality):
 - speed-up up to: $O(b^d) \rightarrow O(b^{d/2})$
 - Speed-up (suboptimal): Limited depth and evaluation functions
 - Iterative deepening (can help alpha-beta through ordering!)
- Stochastic games
 - Expectimax
- Non-zero-sum games