CS 268: Integrated Services

Lakshminarayanan Subramanian
Feb 20, 2003

Question to the Class?

• Flow AD requires b/w, delay, loss guarantees
• Cross traffic is unpredictable
• Can IP provide this?
• What modifications are necessary to accomplish this?

Limitations of IP

- IP provides only best effort service
- IP does not participate in resource management
 - Cannot provide service guarantees on a per flow basis
 - Cannot provide service differentiation among traffic aggregates
- Early efforts
 - Tenet group at Berkeley
 - ATM
- IETF efforts
 - Integrated services initiative
 - Differentiated services initiative

So, what is required?

- Flow differentiation
 - Simple FIFO scheduling will not work!
- Admission control
- Resource reservation
- Flow specification
Integrated Services Internet

- Enhance IP’s service model
 - Old model: single best-effort service class
 - New model: multiple service classes, including best-effort and QoS classes
- Create protocols and algorithms to support new service models
 - Old model: no resource management at IP level
 - New model: explicit resource management at IP level
- Key architecture difference
 - Old model: stateless
 - New model: per flow state maintained at routers
 - used for admission control and scheduling
 - set up by signaling protocol

Integrated Services Network

- Flow or session as QoS abstractions
- Each flow has a fixed or stable path
- Routers along the path maintain the state of the flow

Integrated Services Example

- Achieve per-flow bandwidth and delay guarantees
 - Example: guarantee 1Mbps and < 100 ms delay to a flow

Integrated Services Example

- Allocate resources - perform per-flow admission control
Integrated Services Example

- Install per-flow state

Sender

Receiver

Integrated Services Example

- Install per flow state

Sender

Receiver

Integrated Services Example: Data Path

- Per-flow classification

Sender

Receiver

Integrated Services Example: Data Path

- Per-flow buffer management

Sender

Receiver
Integrated Services Example

- Per-flow scheduling

How Things Fit Together

Service Classes

- Service can be viewed as a contract between network and communication client
 - end-to-end service
 - other service scopes possible
- Three common services
 - best-effort ("elastic" applications)
 - hard real-time ("real-time" applications)
 - soft real-time ("tolerant" applications)

Hard Real Time: Guaranteed Services

- Service contract
 - network to client: guarantee a deterministic upper bound on delay for each packet in a session
 - client to network: the session does not send more than it specifies
- Algorithm support
 - admission control based on worst-case analysis
 - per flow classification/scheduling at routers
Soft Real Time: Controlled Load Service

- Service contract:
 - network to client: similar performance as an unloaded best-effort network
 - client to network: the session does not send more than it specifies

- Algorithm Support
 - admission control based on measurement of aggregates
 - scheduling for aggregate possible

Role of RSVP in the Architecture

- Signaling protocol for establishing per flow state
- Carry resource requests from hosts to routers
- Collect needed information from routers to hosts
- At each hop
 - consults admission control and policy module
 - sets up admission state or informs the requester of the failure

RSVP Design Features

- IP Multicast centric design
 - Why multicast and not unicast?
- Receiver initiated reservation
- Different reservation styles
- Soft state inside network
 - Why soft state?
- Decouple routing from reservation

IP Multicast

- Best-effort MxN delivery of IP datagrams
- Basic abstraction: IP multicast group
 - identified by Class D address: 224.0.0.0 - 239.255.255.255
 - sender needs only to know the group address, but not the membership
 - receiver joins/leaves group dynamically
- Routing and group membership managed distributedly
 - no single node knows the membership
 - tough problem
 - various solutions: DVMRP, CBT, PIM
RSVP Reservation Model

- Performs signaling to set up reservation state for a session
- A session is a simplex data flow sent to a unicast or a multicast address, characterized by:
 - <IP dest, protocol number, port number>
- Multiple senders and receivers can be in session

The Big Picture

[Network Diagram showingSender, PATH Msg, Receiver, RESV Msg]

Things to notice:
- Receiver initiated reservation
- Decouple the routing from reservation
- Two types of state: path and reservation

RSVP Basic Operations

- Sender sends PATH message via the data delivery path:
 - set up the path state each router including the address of previous hop
- Receiver sends RESV message on the reverse path:
 - specifies the reservation style, QoS desired
 - set up the reservation state at each router
- Things to notice:
 - Receiver initiated reservation
 - Decouple the routing from reservation
 - Two types of state: path and reservation
Route Pinning: Is this feasible?

- Problem: asymmetric routes
 - You may reserve resources on R→S3→S5→S4→S1→S, but data travels on S→S1→S2→S3→R !
- Solution: use PATH to remember direct path from S to R, i.e., perform route pinning

PATH and RESV messages

- PATH also specifies
 - Source traffic characteristics
 - use token bucket
 - Reservation style – specify whether a RESV message will be forwarded to this server
- RESV specifies
 - Queuing delay and bandwidth requirements
 - Source traffic characteristics (from PATH)
 - Filter specification, i.e., what senders can use reservation
 - Based on these routers perform reservation

Token Bucket

- Characterized by two parameters \((r, b)\)
 - \(r\) – average rate
 - \(b\) – token depth
- Assume flow arrival rate \(\leq R\) bps (e.g., R link capacity)
- A bit is transmitted only when there is an available token
- Arrival curve – maximum amount of bits transmitted by time \(t\)

Per-hop Reservation

- Given \((b, r, R)\) and per-hop delay \(d\)
- Allocate bandwidth \(r_s\) and buffer space \(B_s\) such that to guarantee \(d\)
End-to-End Reservation

- When R gets PATH message it knows
 - Traffic characteristics (tspec): (r,b,R)
 - Number of hops
- R sends back this information + worst-case delay in RESV
- Each router along path provide a per-hop delay guarantee
 - In simplest case routers split the delay

![Diagram of network with routers S1, S2, S3, R1, R2, S4 connected with lines indicating PATH and RESV]

Reservation Style

- Motivation: achieve more efficient resource utilization in multicast (M x N)
- Observation: in a video conferencing when there are M senders, only a few can be active simultaneously
 - multiple senders can share the same reservation
- Various reservation styles specify different rules for sharing among senders

Reservation Styles and Filter Spec

- Reservation style
 - use filter to specify which sender can use the reservation
- Three styles
 - wildcard filter: does not specify any sender; all packets associated to a destination shares same resources
 - Group in which there are a small number of simultaneously active senders
 - fixed filter: no sharing among senders, sender explicitly identified for the reservation
 - Sources cannot be modified over time
 - dynamic filter: resource shared by senders that are (explicitly) specified
 - Sources can be modified over time

![Diagram of network with nodes H1, H2, H3, H4, H5 connected with lines indicating receivers and senders]

Wildcard Filter Example

- Receivers: H1, H2; senders: H3, H4, H5
- Each sender sends B
- H1 reserves B; listen from one server at a time
Wildcard Filter Example

- H2 reserves B

Wildcard Filter

- Advantages
 - Minimal state at routers
 - Routers need to maintain only routing state augmented by reserved bandwidth on outgoing links
- Disadvantages
 - May result in inefficient resource utilization

Wildcard Filter: Inefficient Resource Utilization Example

- H1 reserves 3B; wants to listen from all senders simultaneously
- Problem: reserve 3B on (S3:S2) although 2B sufficient!

Fixed Filter Example

- Receivers: H2, H3, H4, H5; Senders: H1, H4, H5
- Routers maintain state for each receiver in the routing table
Fixed Filter Example
- H2 wants to receive B only from H4

Dynamic Filter Example
- H5 wants to receive 2B from any source

Soft State
- Per session state has a timer associated with it
 - path state, reservation state
- State lost when timer expires
- Sender/Receiver periodically refreshes the state
- Claimed advantages
 - no need to clean up dangling state after failure
 - can tolerate lost signaling packets
 - signaling message need not be reliably transmitted
 - easy to adapt to route changes
- State can be explicitly deleted by a Teardown message

Tear-down Example
- H4 leaves the group
 - H4 no longer sends PATH message
 - State corresponding to H4 removed
Tear-down Example

- H4 leaves the group
 - H4 no longer sends PATH message
 - State corresponding to H4 removed

RSVP and Routing

- RSVP designed to work with variety of routing protocols
- Minimal routing service
 - RSVP asks routing how to route a PATH message
- Route pinning
 - addresses QoS changes due to “avoidable” route changes while session in progress
- QoS routing
 - RSVP route selection based on QoS parameters
 - granularity of reservation and routing may differ
- Explicit routing
 - Use RSVP to set up routes for reserved traffic

Recap of RSVP

- PATH message
 - sender template and traffic spec
 - advertisement
 - mark route for RESV message
 - follow data path
- RESV message
 - reservation request, including flow and filter spec
 - reservation style and merging rules
 - follow reverse data path
- Other messages
 - PathTear, ResvTear, PathErr, ResvErr

What is still Missing?

- Classification algorithm
- Scheduling algorithm
- Admission control algorithm
- QoS Routing algorithm
Why did IntServ fail?

- Economic factors
 - Deployment cost vs Benefit
- Is reservation, the right approach?
 - Multicast centric view
- Is per-flow state maintenance an issue?
- What about QoS in general?