Motivations

- Changes in the network happen very slowly
- Why?
 - Network services are end-to-end
 - At the limit, a service has to be supported by all routers along the path
 - Chicken-and-egg problem: if there aren’t enough routers supporting the service, end-hosts won’t benefit
- Internet network is a shared infrastructure
 - Need to achieve consensus (IETF)

Goals

- Make it easy to deploy new functionalities in the network → accelerate the pace of innovation
- Allow users to customize their services
Solution

- Active networks (D. Tannenhouse and D. Wetherall ’96):
 - Routers can download and execute remote code
 - At extreme, allow each user to control its packets

User 1: RED
User 2: Multicast

Active Nodes

- Provide environment for running service code
 - Soft-storage, routing, packet manipulation
- Ensure safety
 - Protect state at node; enforce packet invariants
- Manage local resources
 - Bound code runtimes and other resource consumptions

Where Is the Code?

- Packets carry the code
 - Maximum flexibility
 - High overhead
- Packets carry reference to the code
 - Reference is based on the code fingerprint: MD5 (128 bits)
 - Advantages:
 • Efficient: MD5 is quick to compute
 • Prevents code spoofing: verify without trust

User: Multicast
Code
Reference

An Active Node Toolkit: ANTS

- Add active nodes to infrastructure

IP routers Active nodes
Code Distribution

- End-systems pre-load code
- Active nodes load code on demand and then cache it

![Diagram showing code distribution](image)

Lesson Learned

- Applications
- Performance
- Security and resource management

Applications

- Well-suited to implement protocol variations
- But not to enforce global policies and resource control (e.g., firewalls and QoS)
 - Need a central authority to implement these functionalities
- Application examples: auctions, reliable multicast, mobility,...

Performances

- ANTS implemented in Java
- In common case little overhead:
 - Extra steps over IP (classification, safe eval) run very fast
 - Enough cycles to run simple programs
 - e.g., 1GHz, 1Gbps, 1000 packets, 100% → 1000 cycles; 10% → 1000 cycles
Security and Resource Mgmt.

- Untrusted users → need to isolate their actions
- Protection: make sure that one program does not
corrupt other program
 - Node level protection
 - Network level protection

Node Level Protection

- Relatively easy to solve
 - Allocate resources among users and control their usage
 - Fair Queueing, per-flow buffer allocation
 - Use light weight mechanisms: sand-box, safe-type languages, Proof
 Carrying Code (PCC):
 - PCC can also provide timeliness guarantees e.g., can
demonstrate that an operation cannot take more time/pace than
a predefined constant
- Note: fundamental trade-off between protection and flexibility
 - Example: if a node uses FQ to provide bandwidth protection, it will
 constrain the delays experienced by a user

Network Level Protection

- More difficult to achieve
- Challenge: enforce global behavior of a program
 only with local checks and control
- Main problem: programs very flexible. Active
 nodes can:
 - Affect routing behavior (e.g., mobile IP)
 - Generate new packets (e.g. multicast)

Examples

- Loops as a result of routing changes
- Resource wastage as a result of misbehaving multicast
 programs
 - Multicast height k, a node can generate up to \(mn \) copies → total
 number of packets can be \(O(mn) \). ^1

- Local solutions not enough
 - TTL too weak: unaware about topology
 - Fair Queuing offers only local protection
Solution

- Program certification by a central authority
- Limitations:
 - Slows innovation, but still better than what we have today
 - Dealing with a misbehaving node still remains difficult

Restricting Active Networks

- Allow only administrators, or privileged users to inject code
 - Router plugins, active bridge
- Restrict affecting only the control plane to increase network manageability
 - SmartPackets
 - Netscript

Active Networks vs. Overlay Networks

- Key difference:
 - Active nodes operate at the network layer; overlay nodes operate at the application layer
 - Active network leverage IP routing between active nodes; Overlay networks control routing between overlay nodes
- Active Networks advantages:
 - Efficiency: no need to tunnel packets; no need to process packets at layers other than the network layer
- Overlay Network advantages:
 - Easier to deploy: no need to integrate overlay nodes in the network infrastructure
 - Active nodes have to collaborate (be trusted) by the other routers in the same AS (they need to exchange routing info)

Conclusions

- Active networks
 - A revolutionary paradigm
 - Explores a significant region of the networking architecture design space
- But is the network layer the right level to deploy it?
 - Maybe, but only if all congested routers are active...
 - Otherwise, overlays might be good enough...