CHECKMATE!

A Brief Introduction to Game Theory

Dan Garcia
UC Berkeley

The World

Kasparov

Game Theory:
Economic or Combinatorial?

- Economic
 ○ von Neumann and Morgenstern’s 1944 Theory of Games and Economic Behavior
 ○ Matrix games
 ○ Prisoner’s dilemma
 ○ Incomplete info, simultaneous moves
 ○ Goal: Maximize payoff

- Combinatorial
 ○ Sprague and Grundy’s 1939 Mathematics and Games
 ○ Board (table) games
 ○ Nim, Domineering
 ○ Complete info, alternating moves
 ○ Goal: Last move

Combinatorial Game Theory

History

- Early Play
 ○ Egyptian wall painting of Senet (c. 3000 BC)

- Theory
 ○ C. L. Bouton’s analysis of Nim [1902]
 ○ Sprague and Grundy [1939] Impartial games and Nim
 ○ Knuth Surreal Numbers [1974]
 ○ Conway On Numbers and Games [1976]
 ○ Prof. Elwyn Berlekamp (UCB), Conway, & Guy Winning Ways [1982]

What is a combinatorial game?

- Two players (Left & Right) move alternately
- No chance, such as dice or shuffled cards
- Both players have perfect information
 ○ No hidden information, as in Stratego & Magic
- The game is finite – it must eventually end
- There are no draws or ties
- Normal Play: Last to move wins!

What games are out, what are in?

- Out
 ○ All card games
 ○ All dice games
- In
 ○ Nim, Domineering, Dots-and-Boxes, Go, etc.
 ○ 1, 2, …, 10, Kayles, Toads & Frogs, Snake, Tactix, Poison
 ○ In, but not normal play
 ○ Chess, Checkers, Othello, Tic-Tac-Toe, etc.

“Computational” Game Theory (for non-normal play games)

- Large games
 ○ Can theorize strategies, build AI systems to play
 ○ Can study endgames, smaller version of original
 • Examples: Quick Chess, 9x9 Go, 6x6 Checkers, etc.
- Small-to-medium games
 ○ Can have computer solve and teach us strategy
 ○ GAMESMAN does exactly this
 • It can solve BOTH normal and non-normal play games
Computational Game Theory

- Simplify games / value
 - Store turn in position
 - Each position is (for player whose turn it is)
 - Winning (3 losing child)
 - Losing (All children winning)
 - Tying (1 losing child, but 1 tying child)
 - Drawing (can't force a winner be forced to lose)

Exciting Game Theory Research at Berkeley

- Combinatorial Game Theory Workshop
 - MSRI July 24-28th, 2000: Son of Games of No Chance
 - 1994 Workshop book: Games of No Chance
- Prof. Elwyn Berlekamp
 - Dots & Boxes, Go endgames
 - Economist’s View of Combinatorial Games
- Dr. Dan Garcia
 - Undergraduate Game Theory Research Group
 - http://www.cs.berkeley.edu/~ddgarcia/research/gametheory/current/