Announcements:

- Please use bug-submit for code problems.
- Watch the newsgroup and class web site for updates, hints, useful new utilities, etc.

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2-4
What Are the Questions?

• **Cost is a principal concern throughout engineering:**

 “An engineer is someone who can do for a dime what any fool can do for a dollar.”

• **Cost can mean**

 - Operational cost (for programs, time to run, space requirements).

 - Development costs: How much engineering time? When delivered?

 - Costs of failure: How robust? How safe?

• **Is this program fast enough? Depends on:**

 - *For what purpose;*

 - *What input data.*

• **How much space (memory, disk space)?**

 - Again depends on what input data.

• **How will it scale, as input gets big?**
Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.

- Solution 2 (Doug McIlroy): UNIX shell script:
  ```
  tr -c -s '[:alpha:]' '[\n*]' < FILE | \
  sort | \
  uniq -c | \
  sort -n -r -k 1,1 | \
  sed 20q
  ```

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 20MB in 1 minute.
 - I pick #2.

- In most cases, anything will do: Keep It Simple.
Cost Measures (Time)

- Wall-clock or execution time
 - You can do this at home:

 \[
 \text{time \ java \ FindPrimes \ 1000}
 \]
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, machine, etc.

- Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn’t tell you actual time, still applies only to specific data sets.

- Symbolic execution times:
 - That is, formulas for execution times or statement counts in terms of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.
Asymptotic Cost

- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 * Can always pre-calculate some results.
 * Times for small inputs not usually important.
 - Constant factors (as in “off by factor of 2”):
 * Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?
Handy Tool: Order Notation

• Idea: Don’t try to produce specific functions that specify size, but rather families of similar functions.

• Say something like “f is bounded by g if it is in g’s family.”

• For any function \(g(x) \), the functions \(2g(x), 1000g(x) \), or for any \(K > 0, K \cdot g(x) \), all have the same “shape”. So put all of them into g’s family.

• Any function \(h(x) \) such that \(h(x) = K \cdot g(x) \) for \(x > M \) (for some constant \(M \)) has g’s shape “except for small values.” So put all of these in g’s family.

• If we want upper limits, throw in all functions that are everywhere \(\leq \) some other member of g’s family. Call this family \(O(g) \) or \(O(g(n)) \).

• Or, if we want lower limits, throw in all functions that are everywhere \(\geq \) some other member of g’s family. Call this family \(\Omega(g) \).

• Finally, define \(\Theta(g) = O(g) \cap \Omega(g) \)—the set of functions bracketed by members of g’s family.
Big Oh

- Goal: Specify bounding from above.

Here, \(f(x) \leq 2g(x) \) as long as \(x > 1 \),

So \(f(x) \) is in \(g \)'s upper-bound family, written

\[
f(x) \in O(g(x)),
\]

... even though \(f(x) > g(x) \) everywhere.
Big Omega

- Goal: Specify bounding from below:

- Here, \(f'(x) \geq \frac{1}{2} g(x) \) as long as \(x > 1 \).
- So \(f'(x) \) is in \(g \)'s lower-bound family, written
 \[f'(x) \in \Omega(g(x)), \]
- ...even though \(f(x) < g(x) \) everywhere.
- In fact, we also have \(f'(x) \in O(g(x)) \) and \(f(x) \in \Omega(g(x)) \) and so we can also write
 \[f(x), f'(x) \in \Theta(g(x)). \]
Why It Matters

• Computer scientists often talk as if constant factors didn't matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.

• In reality they do, but we still have a point: at some point, constants get swamped.

<table>
<thead>
<tr>
<th>n</th>
<th>$16 \log n$</th>
<th>\sqrt{n}</th>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>2.8</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4,096</td>
<td>65,636</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>5.7</td>
<td>32</td>
<td>160</td>
<td>1024</td>
<td>32,768</td>
<td>4.2×10^9</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>64</td>
<td>384</td>
<td>4,096</td>
<td>262,144</td>
<td>1.8×10^{19}</td>
</tr>
<tr>
<td>128</td>
<td>112</td>
<td>11</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>2.1×10^9</td>
<td>3.4×10^{38}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1,024</td>
<td>160</td>
<td>32</td>
<td>1,024</td>
<td>10,240</td>
<td>1.0×10^6</td>
<td>1.1×10^9</td>
<td>1.8×10^{308}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2^{20}</td>
<td>320</td>
<td>1024</td>
<td>1.0×10^6</td>
<td>2.1×10^7</td>
<td>1.1×10^{12}</td>
<td>1.2×10^{18}</td>
<td>$6.7 \times 10^{315,652}$</td>
</tr>
</tbody>
</table>
Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- $N = \text{problem size}$

<table>
<thead>
<tr>
<th>Time (μsec) for problem size N</th>
<th>1 second</th>
<th>Max N Possible in</th>
<th>1 hour</th>
<th>1 month</th>
<th>1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lg N$</td>
<td>10^{300000}</td>
<td>$10^{10000000000}$</td>
<td>$10^{8}\cdot10^{11}$</td>
<td>$10^{9}\cdot10^{14}$</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>10^6</td>
<td>$3.6 \cdot 10^9$</td>
<td>$2.7 \cdot 10^{12}$</td>
<td>$3.2 \cdot 10^{15}$</td>
<td></td>
</tr>
<tr>
<td>$N \lg N$</td>
<td>63000</td>
<td>$1.3 \cdot 10^8$</td>
<td>$7.4 \cdot 10^{10}$</td>
<td>$6.9 \cdot 10^{13}$</td>
<td></td>
</tr>
<tr>
<td>N^2</td>
<td>1000</td>
<td>60000</td>
<td>$1.6 \cdot 10^6$</td>
<td>$5.6 \cdot 10^7$</td>
<td></td>
</tr>
<tr>
<td>N^3</td>
<td>100</td>
<td>1500</td>
<td>14000</td>
<td>150000</td>
<td></td>
</tr>
<tr>
<td>2^N</td>
<td>20</td>
<td>32</td>
<td>41</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>
Using the Notation

• Can use this order notation for any kind of real-valued function.

• We will use them to describe cost functions. Example:

```java
/** Find position of X in list L. Return -1 if not found */
int find (List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals (L.head)) return c;
    return -1;
}
```

• Choose representative operation: number of `.equals` tests.

• If N is length of L, then loop does at most N tests: worst-case
time is N tests.

• In fact, total # of instructions executed is roughly proportional
to N in the worst case, so can also say worst-case time is $O(N)$,
regardless of units used to measure.

• Use $N > M$ provision (in defn. of $O(\cdot)$) to handle empty list.
Careful!

• It’s also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.

• The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.

• Instead, we are just saying something about the function that maps N into the largest possible time required to process an array of length N.

• To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.

• But again, that still tells us nothing about best-case time, which happens when we find x at the beginning of the loop. Best-case time is $\Theta(1)$.
Effect of Nested Loops

- Nested loops often lead to polynomial bounds:

  ```java
  for (int i = 0; i < A.length; i += 1)
      for (int j = 0; j < A.length; j += 1)
          if (i != j && A[i] == A[j])
              return true;
  return false;
  ```

- Clearly, time is $O(N^2)$, where $N = A$.length. **Worst-case time is $\Theta(N^2)$**.

- Loop is inefficient though:

  ```java
  for (int i = 0; i < A.length; i += 1)
      for (int j = i+1; j < A.length; j += 1)
          if (A[i] == A[j]) return true;
  return false;
  ```

- Now worst-case time is proportional to

 $$N - 1 + N - 2 + \ldots + 1 = N(N - 1)/2 \in \Theta(N^2)$$

 (so asymptotic time unchanged by the constant factor).
Recursion and Recurrences: Fast Growth

• Silly example of recursion:

```java
/** True iff X is a substring of S */
boolean occurs (String S, String X) {
    if (S.equals (X)) return true;
    if (S.length () <= X.length ()) return false;
    return
        occurs (S.substring (1), X) ||
        occurs (S.substring (0, S.length ()-1), X);
}
```

• In the worst case, both recursive calls happen.

• Define $C(N)$ to be the worst-case cost of $\text{occurs}(S,X)$ for S of length N, X of fixed size N_0, measured in # of calls to occurs. Then

$$C(N) = \begin{cases}
1, & \text{if } N \leq N_0, \\
2C(N - 1) + 1 & \text{if } N > N_0
\end{cases}$$

• So $C(N)$ grows exponentially:

$$C(N) = 2C(N - 1) + 1 = 2(2C(N - 2) + 1) + 1 = \ldots = 2^{\underbrace{\cdots2\cdot1+1}} + \ldots + 1 = 2^{N-N_0} + 2^{N-N_0-1} + 2^{N-N_0-2} + \ldots + 1 = 2^{N-N_0+1} - 1 \in \Theta(2^N)$$
Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes
 * S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn (String X, String[] S, int L, int U) {
 if (L > U) return false;
 int M = (L+U)/2;
 int direct = X.compareTo (S[M]);
 if (direct < 0) return isIn (X, S, L, M-1);
 else if (direct > 0) return isIn (X, S, M+1, U);
 else return true;
}

• Here, worst-case time, \(C(D) \), (as measured by \# of string comparisons), depends on size \(D = U - L + 1 \).

• We eliminate \(S[M] \) from consideration each time and look at half the rest. Assume \(D = 2^k - 1 \) for simplicity, so:

\[
C(D) = \begin{cases}
0, & \text{if } D \leq 0, \\
1 + C((D - 1)/2), & \text{if } D > 0.
\end{cases}
\]

\[
= 1 + 1 + \ldots + 1 + 0 = k = \lceil \lg D \rceil \in \Theta(\lg D)
\]
Another Typical Pattern: Merge Sort

List sort (List L) {
 if (L.length () < 2) return L;
 Split L into L0 and L1 of about equal size;
 L0 = sort (L0); L1 = sort (L1);
 return Merge of L0 and L1
}

- Assuming that size of L is $N = 2^k$, worst-case cost function, $C(N)$, counting just merge time (\propto # items merged):

$$C(N) = \begin{cases}
 1, & \text{if } N < 2; \\
 2C(N/2) + N, & \text{if } N \geq 2.
\end{cases}$$

$$= 2(2C(N/4) + N/2) + N$$
$$= 4C(N/4) + N + N$$
$$= 8C(N/8) + N + N + N$$
$$= N \cdot 1 + \underbrace{N + N + \ldots + N}_{k=\lg N}$$
$$= N + N \lg N \in \Theta(N \lg N)$$

- In general, $\Theta(N \lg N)$ for arbitrary N (not just 2^k).
Amortization: Expanding Vectors

- When using array for expanding sequence, best to double size of array to grow it. Here’s why.

- If array is size s, doubling its size and moving s elements to the new array takes time $\propto 2s$.

- Cost of inserting N items into array, doubling size as needed, starting with array size 1:

<table>
<thead>
<tr>
<th>To Insert</th>
<th>Resizing Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item #</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3 to 4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5 to 8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>$2^m + 1$ to 2^{m+1}</td>
<td>2^m+1</td>
<td>$2^{m+2} - 2$</td>
<td>≈ 2</td>
<td>2^{m+1}</td>
</tr>
</tbody>
</table>

- If we spread out (amortize) the cost of resizing, we average about 2 time units on each item: “amortized insertion time is 2 units.”

- So even though worst-case time for adding one element to array of N elements is $2N$, time to add N elements is $\Theta(N)$, not $\Theta(N^2)$.
Demonstrating Amortized Time: Potential Method

• To formalize the argument, associate a potential, \(\Phi_i \geq 0 \), to the \(i^{th} \) operation that keeps track of “saved up” time from cheap operations that we can “spend” on later expensive ones. Start with \(\Phi_0 = 0 \).

• Now define the amortized cost of the \(i^{th} \) operation as

\[
a_i = c_i + \Phi_{i+1} - \Phi_i,
\]

where \(c_i \) is the real cost of the operation.

• On cheap operations, we artificially set \(a_i > c_i \) and increase \(\Phi \) (\(\Phi_{i+1} > \Phi_i \)).

• On expensive ones, we typically have \(a_i \ll c_i \) and greatly decrease \(\Phi \) (but don’t let it go negative—may not be “overdrawn”).

• We try to do all this so that \(a_i \) remains as we desired (e.g., \(O(1) \) for expanding array), without allowing \(\Phi_i < 0 \).

• Requires that we choose \(a_i \) so that \(\Phi_i \) always stays ahead of \(c_i \).
Application to Expanding Arrays

• When adding to our array, the cost, c_i, of adding element #\(i\) when the array already has space for it is 1 unit.

• The array does not initially have space when adding items 1, 2, 4, 8, 16,... —in other words at item 2^n for all $n \geq 0$. So,
 - $c_i = 1$ if $i \geq 0$ and is not a power of 2; and
 - $c_i = 3i + 1$ (allocate $2i$ items, copy i items, and then add item #\(i\)) when i is a power of 2.

• So on each operation #\(2^n\) we’re going to need to have saved up at least $3 \cdot 2^n$ units of potential to cover the expense, and we have the preceding 2^{n-1} operations to do it (the ones since the preceding doubling operation).

• To do so, just choose $a_i = 7$ (or could let $a_0 = 1, a_1 = 4$)

• Here’s what happens:

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_i)</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>(a_i)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(\Phi_i)</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td>51</td>
</tr>
</tbody>
</table>