Today:
- Sorting algorithms: why?
- Insertion, Shell’s, Heap, Merge sorts
- Quicksort
- Selection
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Purposes of Sorting
- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions
- A sort is a *permutation* (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \(\leq \), is:
 - Total: \(x \leq y \) or \(y \leq x \) for all \(x, y \).
 - Reflexive: \(x \leq x \);
 - Antisymmetric: \(x \leq y \) and \(y \leq x \) iff \(x = y \).
 - Transitive: \(x \leq y \) and \(y \leq z \) implies \(x \leq z \).
- However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called stable.

Classifications
- *Internal sorts* keep all data in primary memory
- *External sorts* process large amounts of data in batches, keeping what won’t fit in secondary storage (in the old days, tapes).
- *Comparison-based* sorting assumes only thing we know about keys is order
- *Radix sorting* uses more information about key structure.
- *Insertion sorting* works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- *Selection sorting* works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.
Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- So gives us $O(N^2)$ algorithm. Can we say more?

Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:
  ```java
  for (int i = 1; i < A.length; i += 1) {
    int j;
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
      if (A[j].compareTo (x) <= 0) /* (1) */
        break;
    }
    A[j+1] = x;
  }
  ```
- #times (1) executes \approx how far x must move.
- If all items within K of proper places, then takes $O(KN)$ operations.
- Thus good for any amount of nearly sorted data.
- One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, $N(N-1)/2$ when reversed).
- Each step of j decreases inversions by 1.

Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k - 1$ apart:
 - sort items #0, $2^k - 1$, $2(2^k - 1)$, $3(2^k - 1)$, ..., then
 - sort items #1, $1 + 2^k - 1$, $1 + 2(2^k - 1)$, $1 + 3(2^k - 1)$, ..., then
 - sort items #2, $2 + 2^k - 1$, $2 + 2(2^k - 1)$, $2 + 3(2^k - 1)$, ..., then
 - etc.
 - sort items 2^{k-2}, $2(2^{k-1} - 1) - 1$, $3(2^{k-1} - 1) - 1$, ...,
 - Each time an item moves, can reduce #inversions by as much as $2^k + 1$.
- Now sort subsequences of elements $2^{k-1} - 1$ apart:
 - sort items #0, $2^{k-1} - 1$, $2(2^{k-1} - 1)$, $3(2^{k-1} - 1)$, ..., then
 - sort items #1, $1 + 2^{k-1} - 1$, $1 + 2(2^{k-1} - 1)$, $1 + 3(2^{k-1} - 1)$, ..., etc.
 - End at plain insertion sort ($2^0 = 1$ apart), but with most inversions gone.
- Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Example of Shell’s Sort

<table>
<thead>
<tr>
<th>I</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

I: Inversions left.
C: Comparisons needed to sort subsequences.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.
- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

```
original: 19 0 -1 7 23 2 42
heapified: 42 23 19 7 0 2 -1
```

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.
- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:

Quicksort: Speed through Probability

Idea:
- Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

```
0: [ ]
1: [ ]
2: [ ]
No elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
1 element processed
```

```
0: [ ]
1: [ ]
2: [ ]
2 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
3 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
4 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
5 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
6 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
7 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
8 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
9 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
10 elements processed
```

```
0: [ ]
1: [ ]
2: [ ]
11 elements processed
```
Example of Quicksort

- In this example, we continue until pieces are size \(\leq 4 \).
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

<table>
<thead>
<tr>
<th>-7</th>
<th>-5</th>
<th>-4</th>
<th>-1</th>
<th>0</th>
<th>10</th>
<th>12</th>
<th>13</th>
<th>15</th>
<th>16</th>
<th>18</th>
<th>19</th>
<th>22</th>
<th>29</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>-5</td>
<td>-7</td>
<td>-1</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>19</td>
<td>15</td>
<td>0</td>
<td>22</td>
<td>29</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>-4</td>
<td>-5</td>
<td>-7</td>
<td>-1</td>
<td>10</td>
<td>0</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>29</td>
<td>34</td>
<td>22</td>
</tr>
</tbody>
</table>

- Now everything is "close to" right, so just do insertion sort:

| -7 | -5 | -4 | -1 | 0 | 10 | 12 | 13 | 15 | 16 | 18 | 19 | 22 | 29 | 34 |

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: \(\Theta(N \lg N) \) with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: \(\Theta(N^2) \).
 - \(\Omega(N \lg N) \) in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes \(\Omega(N^2) \) time very unlikely!

Quick Selection

The Selection Problem: for given \(k \), find \(k \)th smallest element in data.

- Obvious method: sort, select element \(#k \), time \(\Theta(N \lg N) \).
- If \(k \leq \) some constant, can easily do in \(\Theta(N) \) time:
 - Go through array, keep smallest \(k \) items.
- Get probably \(\Theta(N) \) time for all \(k \) by adapting quicksort:
 - Partition around some pivot, \(p \), as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index \(m \), all elements \(\leq \) pivot have indicies \(\leq m \).
 - If \(m = k \), you're done: \(p \) is answer.
 - If \(m > k \), recursively select \(k \)th from left half of sequence.
 - If \(m < k \), recursively select \((k - m - 1)\)th from right half of sequence.

Selection Example

Problem: Find just item \(#10 \) in the sorted version of array:

<table>
<thead>
<tr>
<th>51</th>
<th>60</th>
<th>21</th>
<th>-4</th>
<th>37</th>
<th>4</th>
<th>49</th>
<th>10</th>
<th>40*</th>
<th>59</th>
<th>0</th>
<th>13</th>
<th>2</th>
<th>39</th>
<th>11</th>
<th>46</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Looking for \#10 to left of pivot 40:

<table>
<thead>
<tr>
<th>13</th>
<th>31</th>
<th>21</th>
<th>-4</th>
<th>37</th>
<th>4*</th>
<th>11</th>
<th>10</th>
<th>39</th>
<th>2</th>
<th>0</th>
<th>40</th>
<th>59</th>
<th>51</th>
<th>49</th>
<th>46</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Looking for \#6 to right of pivot 4:

| -4 | 0 | 2 | 4 | 37 | 13 | 11 | 10 | 39 | 21 | 31* | 40 | 59 | 51 | 49 | 46 | 60 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 4 |

Looking for \#1 to right of pivot 31:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 39 | 37 | 40 | 59 | 51 | 49 | 46 | 60 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 9 |

Just two elements: just sort and return \#1:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 37 | 39 | 40 | 59 | 51 | 49 | 46 | 60 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 9 |

Result: 39
Selection Performance

• For this algorithm, if \(m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[= N + N/2 + \ldots + 1\]

\[= 2N - 1 \in \Theta(N)\]

• But in worst case, get \(\Theta(N^2) \), as for quicksort.

• By another, non-obvious algorithm, can get \(\Theta(N) \) worst-case time for all \(k \) (take CS170).

Better than \(N \lg N \)?

• Can prove that if all you can do to keys is compare them then sorting must take \(\Omega(N \lg N) \).

• Basic idea: there are \(N! \) possible ways the input data could be scrambled.

• Therefore, your program must be prepared to do \(N! \) different combinations of move operations.

• Therefore, there must be \(N! \) possible combinations of outcomes of all the if tests in your program (we’re assuming that comparisons are 2-way).

• Since each if test goes two ways, number of possible different outcomes for \(k \) if tests is \(2^k \).

• Thus, need enough tests so that \(2^k > N! \), which means \(k \in \Omega(\lg N!) \).

• Using Stirling’s approximation,

\[
m! \in \sqrt{2\pi m} \left(\frac{m}{e} \right)^m \left(1 + \Theta \left(\frac{1}{m} \right) \right),
\]

this tells us that

\[k \in \Omega(N \lg N).\]

Beyond Comparison: Distribution Counting

• But suppose can do more than compare keys?

• For example, how can we sort a set of \(N \) integer keys whose values range from 0 to \(kN \), for some small constant \(k \)?

• One technique: count the number of items < 1, < 2, etc.

• If \(M_p = \# \) items with value \(p \), then in sorted order, the \(j \)th item with value \(p \) must be \(\#M_p + j \).

• Gives linear-time algorithm.

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

\[
\begin{array}{cccccccccccc}
7 & 0 & 4 & 0 & 9 & 1 & 9 & 1 & 9 & 5 & 3 & 7
\end{array}
\]

\[
\begin{array}{cccccccc}
3 & 3 & 1 & 2 & 2 & 1 & 1 & 3 & 0 & 3
\end{array}
\]

• "Counts" line gives # occurrences of each key.

• "Running sum" gives cumulative count of keys \(\leq \) each value…

• …which tells us where to put each key:

• The first instance of key \(k \) goes into slot \(m \), where \(m \) is the number of key instances that are \(< k \).
Radix Sort

Idea: Sort keys one character at a time.
- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

<table>
<thead>
<tr>
<th>Pass 1</th>
<th>Pass 2</th>
<th>Pass 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(by char #2)</td>
<td>(by char #1)</td>
<td>(by char #0)</td>
</tr>
<tr>
<td>bet</td>
<td>can</td>
<td>set</td>
</tr>
<tr>
<td>let</td>
<td>cat</td>
<td>con</td>
</tr>
<tr>
<td>bat</td>
<td>cad</td>
<td>let</td>
</tr>
<tr>
<td>be</td>
<td>con</td>
<td>set</td>
</tr>
<tr>
<td>'b'</td>
<td>'c'</td>
<td>'l'</td>
</tr>
<tr>
<td>'t'</td>
<td>'e'</td>
<td>'s'</td>
</tr>
<tr>
<td>bet, be, bat, be, bet / cat, cad, con / let / set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bat / * be, be, bet / cat, cad, con / can / let / set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bat / be, be, bet / * cat, cad, con / can / let / set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bat / be, be, bet / * cat, cad, con / can / let / set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bat / be, be, bet / * cat, cad, con / can / let / set</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

<table>
<thead>
<tr>
<th>A</th>
<th>posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ set, cat, cad, con, bat, can, be, let, bet</td>
<td>0</td>
</tr>
<tr>
<td>+ bat, be, bet / cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / * be, bet / cat, cad, con, can / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be, be, bet / * cat, cad, con / can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / be, be, bet / * cat, cad, con / can / let / set</td>
<td>2</td>
</tr>
</tbody>
</table>

Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- To have N different records, must have keys at least $\Theta(lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \cdot lg N$ comparisons really means $N(lg N)^2$ operations.
- While radix sort takes $B = N \cdot lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $lg N$ each, plus $\Theta(N)$ to traverse, gives
 $$\Theta(N + N \cdot lg N) = \Theta(N \cdot lg N)$$
Summary

- Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.