Today:
• Pseudo-random Numbers (Chapter 11)
• What use are random sequences?
• What are "random sequences"?
• Pseudo-random sequences.
• How to get one.
• Relevant Java library classes and methods.
• Random permutations.

Why Random Sequences?
• Choose statistical samples
• Simulations
• Random algorithms
• Cryptography:
 - Choosing random keys
 - Generating streams of random bits (e.g., SSL xor's your data with a regeneratable, pseudo-random bit stream that only you and the recipient can generate).
• And, of course, games

What Is a "Random Sequence"?
• How about: "a sequence where all numbers occur with equal frequency"?
 - Like 1, 2, 3, 4, ...?
• Well then, how about: "an unpredictable sequence where all numbers occur with equal frequency"?
 - Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, ...?
• Besides, what is wrong with 0, 0, 0, 0, ... anyway? Can't that occur by random selection?

Pseudo-Random Sequences
• Even if definable, a "truly" random sequence is difficult for a computer (or human) to produce.
• For most purposes, need only a sequence that satisfies certain statistical properties, even if deterministic.
• Sometimes (e.g., cryptography) need sequence that is hard or impractical to predict.
• Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests.
• For example, look at lengths of runs: increasing or decreasing contiguous subsequences.
• Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth.
Generating Pseudo-Random Sequences

• Not as easy as you might think.
• Seemingly complex jumbling methods can give rise to bad sequences.
• Linear congruential method is a simple method that has withstood test of time:
 \[X_0 = \text{arbitrary seed} \]
 \[X_i = (aX_{i-1} + c) \mod m, \quad i > 0 \]

 • Usually, \(m \) is large power of 2.
 • For best results, want \(a \equiv 5 \mod 8 \), and \(a, c, m \) with no common factors.

 • This gives generator with a period of \(m \) (length of sequence before repetition), and reasonable potency (measures certain dependencies among adjacent \(X_i \)).

 • Also want bits of \(a \) to “have no obvious pattern” and pass certain other tests (see Knuth).

 • Java uses \(a = 25214903917 \), \(c = 11 \), \(m = 2^{48} \), to compute 48-bit pseudo-random numbers but I haven’t checked to see how good this is.

What Can Go Wrong?

• Short periods, many impossible values: E.g., \(a, c, m \) even.
• Obvious patterns. E.g., just using lower 3 bits of \(X \), in Java’s 48-bit generator, to get integers in range 0 to 7. By properties of modular arithmetic,
 \[X_i \mod 8 = (25214903917X_{i-1} + 11 \mod 2^{48}) \mod 8 \]
 \[= (5(X_{i-1} \mod 8) + 3) \mod 8 \]

so we have a period of 8 on this generator; sequences like

\[0, 1, 3, 7, 1, 2, 7, 1, 4, \ldots \]

are impossible. This is why Java doesn’t give you the raw 48 bits.

• Bad potency leads to bad correlations.
 - E.g. Take \(c = 0 \), \(a = 65539 \), \(m = 2^{31} \), and make 3D points:
 \((X_i/S, X_{i+1}/S, X_{i+2}/S) \), where \(S \) scales to a unit cube.

 - Points will be arranged in parallel planes with voids between.

 - So, “random points” won’t ever get near many points in the cube.

Other Generators

• Additive generator:
 \[X_n = \begin{cases} \text{arbitrary value}, & n < 55 \\ (X_{n-24} + X_{n-55}) \mod 2^e, & n \geq 55 \end{cases} \]

 • Other choices than 24 and 55 possible.
 • This one has period of \(2^f(2^{55} - 1) \), for some \(f < e \).

 • Simple implementation with circular buffer:
 \[i = (i+1) \mod 55; \quad X[i] = X[(i+31) \mod 55]; \quad /\text{Why } +31 \text{ (55-24) instead of -24?} \]
 \[\text{return } X[i]; \quad \text{*/ modulo } 2^{32} */ \]

 • where \(X[0 \ldots 54] \) is initialized to some “random” initial seed values.

Adjusting Range and Distribution

• Given raw sequence of numbers, \(X_i \), from above methods in range (e.g.) 0 to \(2^{48} \), how to get uniform random integers in range 0 to \(n-1 \)?

 • If \(n = 2^k \), is easy: use top \(k \) bits of next \(X_i \) (bottom \(k \) bits not as “random”)

 • For other \(n \), be careful of slight biases at the ends. For example, if we compute \(X_i/(2^{48}/n) \) using all integer division, and if \((2^{48}/n) \) doesn’t come out even, then you can get \(n \) as a result (which you don’t want).

 • Easy enough to fix with floating point, but can also do with integers; one method (used by Java for type int):

    ```java
    /** Random integer in the range 0 .. n-1, n > 0. */
    int nextInt (int n) {
        long X = next random long (0 \leq X < 2^{48});
        if (n is 2^k for some k) return top k bits of X;
        int MAX = largest multiple of n that is < 2^{48};
        while (X, >= MAX) X = next random long (0 \leq X < 2^{48});
        return X_i / (MAX/n);
    }
    ```

Last modified: Fri Nov 13 16:10:52 2009
Arbitrary Bounds

- How to get arbitrary range of integers (L to U)?
- To get random float, x in range 0 ≤ x < d, compute
 \[\text{return } d \times \text{nextInt}(1<<24) / (1<<24); \]
- Random double a bit more complicated: need two integers to get enough bits.
 \[\text{long bigRand = ((long) nextInt(1<<26) << 27) + (long) nextInt(1<<27); return d \times \text{bigRand} / (1L << 53);} \]

Other Distributions

- Can also turn uniform random integers into arbitrary other distributions, like the Gaussian.
 \[P(x) \]

Computing Arbitrary Discrete Distribution

- Example from book: want integer values \(X_i \) with \(\Pr(X_i = 0) = 1/12 \), \(\Pr(X_i = 1) = 1/2 \), \(\Pr(X_i = 2) = 1/3 \), \(\Pr(X_i = 3) = 1/12 \):

Java Classes

- Math.random(): random double in \([0..1)\).
- Class java.util.Random: a random number generator with constructors:
 - Random() generator with "random" seed (based on time).
 - Random(seed) generator with given starting value (reproducible).
- Methods
 - next(k) k-bit random integer
 - nextInt(n) int in range \([0..n)\).
 - nextLong() random 64-bit integer.
 - nextBoolean(), nextFloat(), nextDouble() Next random values of other primitive types.
 - nextGaussian() normal distribution with mean 0 and standard deviation 1 ("bell curve").
- Collections.shuffle(L, R) for list R and Random R permutes L randomly (using R).
Shuffling

- A shuffle is a random permutation of some sequence.
- Obvious dumb technique for sorting \(N \)-element list:
 - Generate \(N \) random numbers
 - Attach each to one of the list elements
 - Sort the list using random numbers as keys.
- Can do quite a bit better:

```java
void shuffle (List L, Random R) {
    for (int i = L.size (); i > 0; i -= 1)
        swap element i-1 of L with element R.nextInt (i) of L;
}
```

Example:

Swap items 0 1 2 3 4 5

Start: \[A\spadesuit, 3 \spadesuit, A \heartsuit, 2 \heartsuit, 3 \heartsuit, A \spadesuit\]

\[\begin{array}{c|c|c}
3 \leftrightarrow 3 & 3 \leftrightarrow 3 & \text{\textbullet} \\
0 \leftrightarrow 1 & 2 \leftrightarrow 0 & \text{\textbullet} \\
4 \leftrightarrow 2 & 1 \leftrightarrow 0 & \text{\textbullet}
\end{array}\]

Random Selection

- Same technique would allow us to select \(N \) items from list:

```java
/** Permute L and return sublist of K>=0 randomly chosen elements of L, using R as random source. */
List select (List L, int k, Random R) {
    for (int i = L.size (); i+k > L.size (); i -= 1)
        swap element i-1 of L with element R.nextInt (i) of L;
    return L.sublist (L.size ()-k, L.size ());
}
```

- Not terribly efficient for selecting random sequence of \(K \) distinct integers from \([0..N)\), with \(K \ll N \).

Alternative Selection Algorithm (Floyd)

```java
/** Random sequence of K distinct integers from 0..N-1, 0<=K<=N. */
IntList selectInts(int N, int K, Random R)
{
    IntList S = new IntList();
    for (int i = N-K; i < N; i += 1) {
        int s = R.randInt(i+1); // 0 <= s <= i < N
        if (s == S.get(j) for some j)
            // Insert value i (which can't be there yet) after the s (i.e., at a random place other than the front)
            S.add (j+1, i);
        else
            // Insert random value s at front
            S.add (0, s);
    }
    return S;
}
```

Example

<table>
<thead>
<tr>
<th>(i)</th>
<th>(s)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>[4]</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>[2, 4]</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>[5, 2, 4]</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>[5, 8, 2, 4]</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>[5, 8, 2, 4, 9]</td>
</tr>
</tbody>
</table>

\[\text{selectRandomIntegers (10, 5, R)}\]