Lecture #35

Public-Service Announcement.

H@B and IEEE present: “Hack”
Time: Sat 1100–Sun 1100
Place: Wozniak Lounge
Prizes: iPads, 24" IPS monitors, Nexus 7s, and more.

• Today: Dynamic programming and memoization.
Dynamic Programming

• A puzzle (D. Garcia):
 - Start with a list with an even number of non-negative integers.
 - Each player in turn takes either the leftmost number or the rightmost.
 - Idea is to get the largest possible sum.

• Example: starting with (6, 12, 0, 8), you (as first player) should take the 8. Whatever the second player takes, you also get the 12, for a total of 20.

• Assuming your opponent plays perfectly (i.e., to get as much as possible), how can you maximize your sum?

• Can solve this with exhaustive game-tree search.
Obvious Program

- Recursion makes it easy, again:

```java
int bestSum (int[] V) {
    int total, i, N = V.length;
    for (i = 0, total = 0; i < N; i += 1) total += V[i];
    return bestSum (V, 0, N-1, total);
}

/** The largest sum obtainable by the first player in the choosing
 * game on the list V[LEFT .. RIGHT], assuming that TOTAL is the
 * sum of all the elements in V[LEFT .. RIGHT]. */
int bestSum (int[] V, int left, int right, int total) {
    if (left > right)
        return 0;
    else {
        int L = total - bestSum (V, left+1, right, total-V[left]);
        int R = total - bestSum (V, left, right-1, total-V[right]);
        return Math.max (L, R);
    }
}
```

- Time cost is $C(0) = 1$, $C(N) = 2C(N - 1)$; so $C(N) \in \Theta(2^N)$
Still Another Idea from CS61A

• The problem is that we are recomputing intermediate results many times.

• Solution: memoize the intermediate results. Here, we pass in an $N \times N$ array ($N = V$.length) of memoized results, initialized to -1.

```java
int bestSum (int[] V, int left, int right, int total, int[][] memo) {
    if (left > right)
        return 0;
    else if (memo[left][right] == -1) {
        int L = total - bestSum (V, left+1, right, total-V[left], memo);
        int R = total - bestSum (V, left, right-1, total-V[right], memo);
        memo[left][right] = Math.max (L, R);
    }
    return memo[left][right];
}
```

• Now the number of recursive calls to bestSum must be $O(N^2)$, for $N =$ the length of V, an enormous improvement from $\Theta(2^N)$!
Iterative Version

• I prefer the recursive version, but the usual presentation of this idea—known as dynamic programming—is iterative:

```java
int bestSum (int[] V) {
    int[][] memo = new int[V.length][V.length];
    int[][] total = new int[V.length][V.length];
    for (int i = 0; i < V.length; i += 1)
        memo[i][i] = total[i][i] = V[i];
    for (int k = 1; k < V.length; k += 1)
        for (int i = 0; i < V.length-k-1; i += 1) {
            total[i][i+k] = V[i] + total[i+1][i+k];
            int L = total[i][i+k] - memo[i+1][i+k];
            int R = total[i][i+k] - memo[i][i+k-1];
            memo[i][i+k] = Math.max (L, R);
        }
    return memo[0][V.length-1];
}
```

• That is, we figure out ahead of time the order in which the memoized version will fill in memo, and write an explicit loop.

• Save the time needed to check whether result exists.

• But I say, why bother?
Longest Common Subsequence

- **Problem**: Find length of the longest string that is a subsequence of each of two other strings.

- **Example**: Longest common subsequence of “sally sells sea shells by the seashore” and “sarah sold salt sellers at the salt mines” is “sa sl sa sells the sae” (length 23)

- **Similarity testing**, for example.

- **Obvious recursive algorithm**:

  ```java
  /** Length of longest common subsequence of S0[0..k0-1] * and S1[0..k1-1] (pseudo Java) */
  static int lls (String S0, int k0, String S1, int k1) {
    if (k0 == 0 || k1 == 0) return 0;
    if (S0[k0-1] == S1[k1-1]) return 1 + lls (S0, k0-1, S1, k1-1);
    else return Math.max (lls (S0, k0-1, S1, k1), lls (S0, k0, S1,k1-1));
  }
  ```

- **Exponential, but obviously memoizable.**
Memoized Longest Common Subsequence

```java
/** Length of longest common subsequence of S0[0..k0-1] 
* and S1[0..k1-1] (pseudo Java) */
static int lls (String S0, int k0, String S1, int k1) {
    int[][] memo = new int[k0+1][k1+1];
    for (int[] row : memo) Arrays.fill (row, -1);
    return lls (S0, k0, S1, k1, memo);
}

private static int lls (String S0, int k0, String S1, int k1, int[][] memo) {
    if (k0 == 0 || k1 == 0) return 0;
    if (memo[k0][k1] == -1) {
        if (S0[k0-1] == S1[k1-1])
            memo[k0][k1] = 1 + lls (S0, k0-1, S1, k1-1, memo);
        else
            memo[k0][k1] = Math.max (lls (S0, k0-1, S1, k1, memo),
                                      lls (S0, k0, S1, k1-1, memo));
    }
    return memo[k0][k1];
}

Q:  How fast will the memoized version be?
```

Q: How fast will the memoized version be?
Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1]
* and S1[0..k1-1] (pseudo Java) */
static int lls (String S0, int k0, String S1, int k1) {
 int[][] memo = new int[k0+1][k1+1];
 for (int[] row : memo) Arrays.fill (row, -1);
 return lls (S0, k0, S1, k1, memo);
}

private static int lls (String S0, int k0, String S1, int k1, int[][] memo) {
 if (k0 == 0 || k1 == 0) return 0;
 if (memo[k0][k1] == -1) {
 if (S0[k0-1] == S1[k1-1])
 memo[k0][k1] = 1 + lls (S0, k0-1, S1, k1-1, memo);
 else
 memo[k0][k1] = Math.max (lls (S0, k0-1, S1, k1, memo),
 lls (S0, k0, S1, k1-1, memo));
 }
 return memo[k0][k1];
}

Q: How fast will the memoized version be? $\Theta(k_0 \cdot k_1)$