Announcements:
• Please use bug-submit for code problems.
• Watch the newsgroup and class web site for updates, hints, useful new utilities, etc.

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2–4

What Are the Questions?
• Cost is a principal concern throughout engineering:
 “An engineer is someone who can do for a dime what any fool can do for a dollar.”
• Cost can mean
 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When delivered?
 - Costs of failure: How robust? How safe?
• Is this program fast enough? Depends on:
 - For what purpose;
 - What input data.
• How much space (memory, disk space)?
 - Again depends on what input data.
• How will it scale, as input gets big?

Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.
• Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.
• Solution 2 (Doug McIlroy): UNIX shell script:
 \texttt{tr -c -s '[:alpha:]' '[:\n*]' < FILE | \\
sort | \\
uniq -c | \\
sort -n -r -k 1,1 | \\
sed 20q}
• Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 20MB in 1 minute.
 - I pick #2.
• In most cases, anything will do: Keep It Simple.

Cost Measures (Time)

• Wall-clock or execution time
 - You can do this at home:
 \texttt{time java FindPrimes 1000}
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, machine, etc.
• Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn’t tell you actual time, still applies only to specific data sets.
• Symbolic execution times:
 - That is, formulas for execution times or statement counts in terms of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.
Asymptotic Cost

- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 - Can always pre-calculate some results.
 - Times for small inputs not usually important.
 - Constant factors (as in "off by factor of 2"):
 - Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?

Handy Tool: Order Notation

- Idea: Don’t try to produce specific functions that specify size, but rather families of similar functions.
- Say something like “f is bounded by g if it is in g’s family.”
- For any function $g(x)$, the functions $2g(x)$, $1000g(x)$, or for any $K > 0$, $K \cdot g(x)$, all have the same “shape”. So put all of them into g’s family.
- Any function $h(x)$ such that $h(x) = K \cdot g(x)$ for $x > M$ (for some constant M) has g’s shape “except for small values.” So put all of these in g’s family.
- If we want upper limits, throw in all functions that are everywhere ≤ some other member of g’s family. Call this family $O(g)$ or $O(g(n))$.
- Or, if we want lower limits, throw in all functions that are everywhere ≥ some other member of g’s family. Call this family $\Omega(g)$.
- Finally, define $\Theta(g) = O(g) \cap \Omega(g)$—the set of functions bracketed by members of g’s family.

Big Oh

- Goal: Specify bounding from above.

- Here, $f(x) \leq 2g(x)$ as long as $x > 1$,
- So $f(x)$ is in g’s upper-bound family, written $f(x) \in O(g(x))$,
- ... even though $f(x) > g(x)$ everywhere.

Big Omega

- Goal: Specify bounding from below:

- Here, $f'(x) \geq \frac{1}{2}g(x)$ as long as $x > 1$,
- So $f'(x)$ is in g’s lower-bound family, written $f'(x) \in \Omega(g(x))$,
- ... even though $f(x) < g(x)$ everywhere.
- In fact, we also have $f'(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$ and so we can also write $f(x), f'(x) \in \Theta(g(x))$.
Why It Matters

• Computer scientists often talk as if constant factors didn’t matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.

• In reality they do, but we still have a point: at some point, constants get swamped.

In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.

<table>
<thead>
<tr>
<th>N</th>
<th>16 lg N</th>
<th>\sqrt{N}</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>2.8</td>
<td>8</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>5.7</td>
<td>32</td>
<td>160</td>
<td>3276</td>
<td>6563</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>64</td>
<td>384</td>
<td>4096</td>
<td>26244</td>
</tr>
<tr>
<td>128</td>
<td>112</td>
<td>11</td>
<td>128</td>
<td>896</td>
<td>16384</td>
<td>3.4 x 10^38</td>
</tr>
</tbody>
</table>

Entries show the largest possible time required to process an array of length N, for various relationships between time required and problem size.

Some Intuition on Meaning of Growth

• How big a problem can you solve in a given time?

• In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.

• Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.

• $N =$ problem size

<table>
<thead>
<tr>
<th>Time (µsec) for problem size N</th>
<th>1 second</th>
<th>1 hour</th>
<th>1 month</th>
<th>1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>lg N</td>
<td>10^{200000}</td>
<td>$10^{1000000000}$</td>
<td>$10^8\cdot 10^{11}$</td>
<td>$10^9\cdot 10^{14}$</td>
</tr>
<tr>
<td>N</td>
<td>10^6</td>
<td>$3.6 \cdot 10^9$</td>
<td>$2.7 \cdot 10^{12}$</td>
<td>$3.2 \cdot 10^{15}$</td>
</tr>
<tr>
<td>$N \lg N$</td>
<td>63000</td>
<td>$1.3 \cdot 10^8$</td>
<td>$7.4 \cdot 10^{10}$</td>
<td>$6.9 \cdot 10^{13}$</td>
</tr>
<tr>
<td>N^2</td>
<td>10000</td>
<td>60000</td>
<td>$1.6 \cdot 10^6$</td>
<td>$5.6 \cdot 10^7$</td>
</tr>
<tr>
<td>N^3</td>
<td>100</td>
<td>1500</td>
<td>14000</td>
<td>150000</td>
</tr>
<tr>
<td>2^N</td>
<td>20</td>
<td>32</td>
<td>41</td>
<td>51</td>
</tr>
</tbody>
</table>

Using the Notation

• Can use this order notation for any kind of real-valued function.

• We will use them to describe cost functions. Example:

```java
/** Find position of X in list L. Return -1 if not found */
int find (List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals (L.head)) return c;
    return -1;
}
```

• Choose representative operation: number of .equals tests.

• If N is length of L, then loop does at most N tests: worst-case time is N tests.

• In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is $O(N)$, regardless of units used to measure.

• Use $N > M$ provision (in defn. of $O(\cdot)$) to handle empty list.

Careful!

• It’s also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.

• The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.

• Instead, we are just saying something about the function that maps N into the largest possible time required to process an array of length N.

• To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.

• But again, that still tells us nothing about best-case time, which happens when we find X at the beginning of the loop. Best-case time is $\Theta(1)$.
Effect of Nested Loops

• Nested loops often lead to polynomial bounds:

  ```java
  for (int i = 0; i < A.length; i += 1)
    for (int j = 0; j < A.length; j += 1)
      if (A[i] == A[j]) return true;
  return false;
  ```

• Clearly, time is $O(N^2)$, where $N = A$.length. Worst-case time is $\Theta(N^2)$.

• Loop is inefficient though:

  ```java
  for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
      if (A[i] == A[j]) return true;
  return false;
  ```

• Now worst-case time is proportional to

 $$N - 1 + N - 2 + \ldots + 1 = N(N - 1)/2 \in \Theta(N^2)$$

 (so asymptotic time unchanged by the constant factor).

Recursion and Recurrences: Fast Growth

• Silly example of recursion:

  ```java
  /** True iff X is a substring of S */
  boolean occurs (String S, String X) {
    if (S.equals (X)) return true;
    if (S.length () <= X.length ()) return false;
    return occurs (S.substring (1), X) ||
           occurs (S.substring (0, S.length ()-1), X);
  }
  return true;
  ```

• Define $C(N)$ to be the worst-case cost of occurs(S,X) for S of length N, X of fixed size N_0, measured in # of calls to occurs. Then

 $$C(N) = \begin{cases}
 1, & \text{if } N \leq N_0, \\
 2C(N-1) + 1 & \text{if } N > N_0
 \end{cases}$$

• In the worst case, both recursive calls happen.

• Define $C(N)$ to be the worst-case cost of occurs(S,X) for S of length N, X of fixed size N_0, measured in # of calls to occurs. Then

 $$C(N) = 2C(N-1) + 1 = 2(2C(N-2) + 1) + 1 = \ldots = 2(\cdots 2 \cdot 1 + 1) + \ldots + 1 = 2^{N-N_0} - 1 \in \Theta(2^N)$$

Another Typical Pattern: Merge Sort

Binary Search: Slow Growth

```java
/** True X iff is an element of S[L .. U]. Assumes 
  \* S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn (String X, String[] S, int L, int U) {
  if (L > U) return false;
  int M = (L+U)/2;
  int direct = X.compareTo (S[M]);
  if (direct < 0) return isIn (X, S, L, M-1);
  else if (direct > 0) return isIn (X, S, M+1, U);
  else return true;
}
```

• Here, worst-case time, $C(D)$, (as measured by # of string comparisons), depends on size $D = U - L + 1$.

• We eliminate $S[M]$ from consideration each time and look at half the rest. Assume $D = 2^k - 1$ for simplicity, so:

 $$C(D) = \begin{cases}
 0, & \text{if } D \leq 0, \\
 1 + C((D-1)/2), & \text{if } D > 0.
 \end{cases}$$

 $$= 1 + 1 + \ldots + 1 + 0 = k = \lfloor \log D \rfloor \in \Theta(\log D)$$

• List sort (List L) {
 if (L.length () < 2) return L;
 Split L into L0 and L1 of about equal size;
 L0 = sort (L0); L1 = sort (L1);
 return Merge of L0 and L1
}

• Assuming that size of L is $N = 2^k$, worst-case cost function, $C(N)$, counting just merge time (∞ # items merged):

 $$C(N) = \begin{cases}
 1, & \text{if } N < 2; \\
 2C(N/2) + N, & \text{if } N \geq 2,
 \end{cases} = 2(2C(N/4) + N/2) + N = 4C(N/4) + N + N = 8C(N/8) + N + N + N = \ldots$$

 $$= N \cdot 1 + N + N + \ldots + N = N + N \log N \in \Theta(N \log N)$$

• In general, $\Theta(N \log N)$ for arbitrary N (not just 2^k).
Amortization: Expanding Vectors

- When using array for expanding sequence, best to double size of array to grow it. Here’s why.
- If array is size \(s\), doubling its size and moving \(s\) elements to the new array takes time \(\propto 2s\).
- Cost of inserting \(N\) items into array, doubling size as needed, starting with array size 1:

<table>
<thead>
<tr>
<th>To Insert</th>
<th>Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item #</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3 to 4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5 to 8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
</tbody>
</table>

\(2^m + 1\) to \(2^{m+1}\)

\(2^{m+2} - 2\) ≈ 2

\(2^{m+1}\)

- If we spread out (amortize) the cost of resizing, we average about 2 time units on each item: “amortized insertion time is 2 units.”
- So even though worst-case time for adding one element to array of \(N\) elements is \(2N\), time to add \(N\) elements is \(\Theta(N)\), not \(\Theta(N^2)\).

Demonstrating Amortized Time: Potential Method

- To formalize the argument, associate a potential, \(\Phi_i \geq 0\), to the \(i^{th}\) operation that keeps track of “saved up” time from cheap operations that we can “spend” on later expensive ones. Start with \(\Phi_0 = 0\).
- Now define the amortized cost of the \(i^{th}\) operation as
 \[a_i = c_i + \Phi_{i+1} - \Phi_i, \]
 where \(c_i\) is the real cost of the operation.
- On cheap operations, we artificially set \(a_i > c_i\) and increase \(\Phi\) (\(\Phi_{i+1} > \Phi_i\)).
- On expensive ones, we typically have \(a_i \ll c_i\) and greatly decrease \(\Phi\) (but don’t let it go negative—may not be “overdrawn”).
- We try to do all this so that \(a_i\) remains as we desired (e.g., \(O(1)\) for expanding array), without allowing \(\Phi_i < 0\).
- Requires that we choose \(a_i\) so that \(\Phi_i\) always stays ahead of \(c_i\).

Application to Expanding Arrays

- When adding to our array, the cost, \(c_i\), of adding element \(#i\) when the array already has space for it is 1 unit.
- The array does not initially have space when adding items 1, 2, 4, 8, 16,...—in other words at item \(2^n\) for all \(n \geq 0\). So,
 - \(c_i = 1\) if \(i \geq 0\) and is not a power of 2; and
 - \(c_i = 3i + 1\) (allocate \(2i\) items, copy \(i\) items, and then add item \(#i\)) when \(i\) is a power of 2.
- So on each operation \(#2^n\) we’re going to need to have saved up at least \(3 \cdot 2^n\) units of potential to cover the expense, and we have the preceding \(2^{n-1}\) operations to do it (the ones since the preceding doubling operation).
- To do so, just choose \(a_i = 7\) (or could let \(a_0 = 1, a_1 = 4\))
- Here’s what happens:

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_i)</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>(a_i)</td>
<td>7</td>
</tr>
<tr>
<td>(\Phi_i)</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>