Today:
- Sorting algorithms: why?
- Insertion, Shell’s, Heap, Merge sorts
- Quicksort
- Selection
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Purposes of Sorting
- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions
- A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \(\preceq \), is:
 - Total: \(x \preceq y \) or \(y \preceq x \) for all \(x, y \).
 - Reflexive: \(x \preceq x \);
 - Antisymmetric: \(x \preceq y \) and \(y \preceq x \) iff \(x = y \).
 - Transitive: \(x \preceq y \) and \(y \preceq z \) implies \(x \preceq z \).
- However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called stable.

Classifications
- **Internal sorts** keep all data in primary memory
- **External sorts** process large amounts of data in batches, keeping what won’t fit in secondary storage (in the old days, tapes).
- **Comparison-based** sorting assumes only thing we know about keys is order
- **Radix sorting** uses more information about key structure.
- **Insertion sorting** works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- **Selection sorting** works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.
Sort by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- So gives us $O(N^2)$ algorithm. Can we say more?

Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:
  ```java
  for (int i = 1; i < A.length; i += 1) {
    int j; Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
      if (A[j].compareTo (x) <= 0) /* (1) */
        break;
    }
    A[j+1] = x;
  }
  ```
- #times (1) executes \approx how far x must move.
- If all items within K of proper places, then takes $O(KN)$ operations.
- Thus good for any amount of nearly sorted data.
- One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, $N(N-1)/2$ when reversed).
- Each step of j decreases inversions by 1.

Shell’s sort

- Idea: Improve insertion sort by first sorting distant elements:
 - First sort subsequences of elements $2^k - 1$ apart:
 - sort items #0, $2^k - 1$, $2(2^k - 1)$, $3(2^k - 1)$, ..., then
 - sort items #1, $1 + 2^k - 1$, $1 + 2(2^k - 1)$, $1 + 3(2^k - 1)$, ..., then
 - sort items #2, $2 + 2^k - 1$, $2 + 2(2^k - 1)$, $2 + 3(2^k - 1)$, ..., then
 - etc.
 - sort items #3, $3 + 2^k - 1$, $3 + 2(2^k - 1)$, $3 + 3(2^k - 1)$, ..., then
 - Each time an item moves, can reduce #inversions by as much as $2^k + 1$.
 - Now sort subsequences of elements $2^{k-1} - 1$ apart:
 - sort items #0, $2^{k-1} - 1$, $2(2^{k-1} - 1)$, $3(2^{k-1} - 1)$, ..., then
 - sort items #1, $1 + 2^{k-1} - 1$, $1 + 2(2^{k-1} - 1)$, $1 + 3(2^{k-1} - 1)$, ..., then
 - End at plain insertion sort ($2^0 = 1$ apart), but with most inversions gone.
 - Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Example of Shell’s Sort

$#I$ $#C$

$15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0$

$0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15$

$0 7 6 5 4 3 2 1 14 13 12 11 10 9 8 15$

$0 1 3 2 4 6 5 7 8 10 9 11 13 12 14 15$

I: Inversions left.
C: Comparisons needed to sort subsequences.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we’ve already seen it in action: use heap.
- Gives $O(N \log N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

<table>
<thead>
<tr>
<th>original:</th>
<th>heapified:</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 0 -1 7 23 2 42</td>
<td>42 23 19 7 0 2 -1</td>
</tr>
<tr>
<td>23 7 19 0 2 42</td>
<td>19 7 2 -1 0 23 42</td>
</tr>
<tr>
<td>7 0 2 -1 19 23 42</td>
<td>2 0 -1 7 19 23 42</td>
</tr>
<tr>
<td>0 -1 2 7 19 23 42</td>
<td>-1 0 2 7 19 23 42</td>
</tr>
</tbody>
</table>

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \log N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

| 0 | 1 | 2 |
| 0 elements processed | 3 |

| 0 | 1 | 2 |
| 1 element processed | 3 |

| 0 | 1 | 2 |
| 2 elements processed | 3 |

| 0 | 1 | 2 |
| 3 elements processed | 3 |

| 0 | 1 | 2 |
| 4 elements processed | 3 |

| 0 | 1 | 2 |
| 6 elements processed | 3 |

| 0 | 1 | 2 |
| 11 elements processed | 3 |

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything $> a$ pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.
Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

```
16 10 13 18 -4 -7 12 -5 19 15 0 22 29 34 -1*
-4 -5 -7 -1 18 13 12 10 19 15 0 22 29 34 16*
-4 -5 -7 -1 15 13 12* 10 0 16 19* 22 29 34 18
-4 -5 -7 -1 10 0 12 15 13 16 18 19 29 34 22
```

- Now everything is "close to" right, so just do insertion sort:

```
-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29 34
```

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you're done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

```
Initial contents:
51 60 21 -4 37 4 49 10 40* 59 0 13 2 39 11 46 31
```

Looking for #10 to left of pivot 40:
```
13 31 21 -4 37 4* 11 10 39 2 0 40 59 51 49 46 60
```

Looking for #6 to right of pivot 4:
```
-4 0 2 4 37 13 11 10 39 21 31* 40 59 51 49 46 60
```

Looking for #1 to right of pivot 31:
```
-4 0 2 4 21 13 11 10 31 39 37 40 59 51 49 46 60
```

Just two elements: just sort and return #1:
```
-4 0 2 4 21 13 11 10 31 37 39 40 59 51 49 46 60
```

Result: 39
Selection Performance

For this algorithm, if \(m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[
= N + N/2 + \ldots + 1 \\
= 2N - 1 \in \Theta(N)
\]

But in worst case, get \(\Theta(N^2) \), as for quicksort.

By another, non-obvious algorithm, can get \(\Theta(N) \) worst-case time for all \(k \) (take CS170).

Better than \(N \log N \)?

Can prove that if all you can do to keys is compare them then sorting must take \(\Omega(N \log N) \).

Basic idea: there are \(N! \) possible ways the input data could be scrambled.

Therefore, your program must be prepared to do \(N! \) different combinations of move operations.

Therefore, there must be \(N! \) possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).

Since each if test goes two ways, number of possible different outcomes for \(k \) if tests is \(2^k \).

Thus, need enough tests so that \(2^k > N! \), which means \(k \in \Omega(\log N!) \).

Using Stirling's approximation,

\[
m! \in \sqrt{2\pi m} \left(\frac{m}{e} \right)^m \left(1 + \Theta \left(\frac{1}{m} \right) \right),
\]

this tells us that

\[k \in \Omega(N \log N). \]

Beyond Comparison: Distribution Counting

But suppose can do more than compare keys?

For example, how can we sort a set of \(N \) integer keys whose values range from 0 to \(kN \), for some small constant \(k \)?

One technique: count the number of items \(< 1 \), \(< 2 \), etc.

If \(M_p = \# \text{items with value } < p \), then in sorted order, the \(j \)th item with value \(p \) must be \(\#M_p + j \).

Gives linear-time algorithm.

Distribution Counting Example

Suppose all items are between 0 and 9 as in this example:

\[
\begin{array}{cccccccccccc}
7 & 0 & 4 & 0 & 9 & 1 & 9 & 1 & 9 & 5 & 3 & 7 & 3 & 1 & 6 & 7 & 4 & 2 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

Counts

Running sum

\[
\begin{array}{cccccccccccc}
0 & 3 & 3 & 1 & 2 & 2 & 1 & 1 & 3 & 0 & 3 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
0 & 0 & 0 & 1 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 6 & 7 & 7 & 9 & 9 & 9 & 9 \\
\end{array}
\]

"Counts" line gives \# occurrences of each key.

"Running sum" gives cumulative count of keys \(\leq \) each value...

...which tells us where to put each key:

The first instance of key \(k \) goes into slot \(m \), where \(m \) is the number of key instances that are \(< k \).
Radix Sort

Idea: Sort keys one character at a time.
- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort).
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

Pass 1 (by char #2)

bet let bat
be cad con set

Pass 2 (by char #1)

bat bet cat con
be cad can set

Pass 3 (by char #0)

bat be bet cat con
be cad can set

Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- To have N different records, must have keys at least $\Theta(lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N lg N$ comparisons really means $N(lg N)^2$ operations.
- While radix sort takes $B = N lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

<table>
<thead>
<tr>
<th>posn</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>set, cat, cad, con, bat, can, be, let, bet</td>
</tr>
<tr>
<td>1</td>
<td>bat, be, bet / cat, cad, con, can / let / set</td>
</tr>
<tr>
<td>2</td>
<td>bat / * be, bet / cat, cad, con, can / let / set</td>
</tr>
<tr>
<td>1</td>
<td>bat / be / bet / * cat, cad, con, can / let / set</td>
</tr>
<tr>
<td>2</td>
<td>bat / be / bet / * cat, cad, con, can / let / set</td>
</tr>
</tbody>
</table>

And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.
- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $lg N$ each, plus $\Theta(N)$ to traverse, gives
 \[\Theta(N + N lg N) = \Theta(N lg N) \]
Summary

- **Insertion sort**: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- **Quicksort**: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- **Merge sort**: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- **Heapsort, treesort with guaranteed balance**: $\Theta(N \lg N)$ guaranteed.
- **Radix sort, distribution sort**: $\Theta(B)$ (number of bytes). Also good for external sorting.