Today:

- Sorting algorithms: why?
- Insertion, Shell’s, Heap, Merge sorts
- Quicksort
- Selection
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
Purposes of Sorting

• Sorting supports searching
• Binary search standard example
• Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
• Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).
Some Definitions

• A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \(\preceq \), is:

 - Total: \(x \preceq y \) or \(y \preceq x \) for all \(x, y \).
 - Reflexive: \(x \preceq x \);
 - Antisymmetric: \(x \preceq y \) and \(y \preceq x \) iff \(x = y \).
 - Transitive: \(x \preceq y \) and \(y \preceq z \) implies \(x \preceq z \).

• However, our orderings may allow unequal items to be equivalent:

 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called stable.
Classifications

- **Internal sorts** keep all data in primary memory
- **External sorts** process large amounts of data in batches, keeping what won’t fit in secondary storage (in the old days, tapes).
- **Comparison-based sorting** assumes only thing we know about keys is order
- **Radix sorting** uses more information about key structure.
- **Insertion sorting** works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- **Selection sorting** works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.
Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.

- Very simple, good for small sets of data.

- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.

- So gives us $O(N^2)$ algorithm. Can we say more?
Inversions

• Can run in $\Theta(N)$ comparisons if already sorted.

• Consider a typical implementation for arrays:

```java
for (int i = 1; i < A.length; i += 1) {
    int j;
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
        if (A[j].compareTo (x) <= 0) /* (1) */
            break;
    }
    A[j+1] = x;
}
```

• #times (1) executes \approx how far x must move.

• If all items within K of proper places, then takes $O(KN)$ operations.

• Thus good for any amount of nearly sorted data.

• One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, $N(N - 1)/2$ when reversed).

• Each step of j decreases inversions by 1.
Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k - 1$ apart:
 - sort items #0, $2^k - 1$, $2(2^k - 1)$, $3(2^k - 1)$, \ldots, then
 - sort items #1, $1 + 2^k - 1$, $1 + 2(2^k - 1)$, $1 + 3(2^k - 1)$, \ldots, then
 - sort items #2, $2 + 2^k - 1$, $2 + 2(2^k - 1)$, $2 + 3(2^k - 1)$, \ldots, then
 - etc.
 - sort items $2^k - 2$, $2(2^k - 1) - 1$, $3(2^k - 1) - 1$, \ldots,
 - Each time an item moves, can reduce #inversions by as much as $2^k + 1$.

- Now sort subsequences of elements $2^{k-1} - 1$ apart:
 - sort items #0, $2^{k-1} - 1$, $2(2^{k-1} - 1)$, $3(2^{k-1} - 1)$, \ldots, then
 - sort items #1, $1 + 2^{k-1} - 1$, $1 + 2(2^{k-1} - 1)$, $1 + 3(2^{k-1} - 1)$, \ldots,
 -

- End at plain insertion sort ($2^0 = 1$ apart), but with most inversions gone.

- Sort is $\Theta(N^{1.5})$ (take CS170 for why!).
Example of Shell’s Sort

I: Inversions left.
C: Comparisons needed to sort subsequences.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- **Gives** $O(N \log N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

original:	19	0	-1	7	23	2	42
heapified:	42	23	19	7	0	2	-1
	23	7	19	-1	0	2	42
	19	7	2	-1	0	23	42
	7	0	2	-1	19	23	42
	2	0	-1	7	19	23	42
	0	-1	2	7	19	23	42
	-1	0	2	7	19	23	42
Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.

- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.

- For internal sorting, can use binomial comb to orchestrate:
Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)
Quicksort: Speed through Probability

Idea:

- *Partition* data into pieces: everything > a *pivot* value at the high end of the sequence to be sorted, and everything ≤ on the low end.

- Repeat recursively on the high and low pieces.

- For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.

- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, #inversions is, too.

- Have to choose pivot well. E.g.: *median* of first, last and middle items of sequence.
Example of Quicksort

• In this example, we continue until pieces are size \(\leq 4 \).

• Pivots for next step are starred. Arrange to move pivot to dividing line each time.

• Last step is insertion sort.

\[
\begin{array}{cccccccccccccccc}
16 & 10 & 13 & 18 & -4 & -7 & 12 & -5 & 19 & 15 & 0 & 22 & 29 & 34 & -1^* \\
-4 & -5 & -7 & -1 & 18 & 13 & 12 & 10 & 19 & 15 & 0 & 22 & 29 & 34 & 16^* \\
-4 & -5 & -7 & -1 & 15 & 13 & 12^* & 10 & 0 & 16 & 19^* & 22 & 29 & 34 & 18 \\
-4 & -5 & -7 & -1 & 10 & 0 & 12 & 15 & 13 & 16 & 18 & 19 & 29 & 34 & 22
\end{array}
\]

• Now everything is “close to” right, so just do insertion sort:

\[
\begin{array}{cccccccccccccccc}
-7 & -5 & -4 & -1 & 0 & 10 & 12 & 13 & 15 & 16 & 18 & 19 & 22 & 29 & 34
\end{array}
\]
Performance of Quicksort

• Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$
 with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!
Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element #\(k\), time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you’re done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.
Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

| 51 | 60 | 21 | -4 | 37 | 4 | 49 | 10 | 40* | 59 | 0 | 13 | 2 | 39 | 11 | 46 | 31 | 0 |

Looking for #10 to left of pivot 40:

| 13 | 31 | 21 | -4 | 37 | 4* | 11 | 10 | 39 | 2 | 0 | 40 | 59 | 51 | 49 | 46 | 60 | 0 |

Looking for #6 to right of pivot 4:

| -4 | 0 | 2 | 4 | 37 | 13 | 11 | 10 | 39 | 21 | 31* | 40 | 59 | 51 | 49 | 46 | 60 | 4 |

Looking for #1 to right of pivot 31:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 39 | 37 | 40 | 59 | 51 | 49 | 46 | 60 | 9 |

Just two elements: just sort and return #1:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 37 | 39 | 40 | 59 | 51 | 49 | 46 | 60 | 9 |

Result: 39
Selection Performance

- For this algorithm, if \(m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[
= N + N/2 + \ldots + 1
\]

\[
= 2N - 1 \in \Theta(N)
\]

- But in worst case, get \(\Theta(N^2) \), as for quicksort.

- By another, non-obvious algorithm, can get \(\Theta(N) \) worst-case time for all \(k \) (take CS170).
Better than $N \lg N$?

- Can prove that *if all you can do to keys is compare them* then sorting must take $\Omega(N \lg N)$.
- Basic idea: there are $N!$ possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do $N!$ different combinations of move operations.
- Therefore, there must be $N!$ possible combinations of outcomes of all the if tests in your program (we’re assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^k.
- Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling’s approximation,

$$m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),$$

this tells us that

$$k \in \Omega(N \lg N).$$
Beyond Comparison: Distribution Counting

• But suppose can do more than compare keys?
• For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
• One technique: count the number of items < 1, < 2, etc.
• If $M_p = \#\text{items with value } < p$, then in sorted order, the j^{th} item with value p must be $\#M_p + j$.
• Gives linear-time algorithm.
Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

| 7 | 0 | 4 | 0 | 9 | 1 | 9 | 1 | 9 | 5 | 3 | 7 | 3 | 1 | 6 | 7 | 4 | 2 | 0 |

| 3 | 3 | 1 | 2 | 2 | 1 | 1 | 3 | 0 | 3 |

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

| 0 | 3 | 6 | 7 | 9 | 11 | 12 | 13 | 16 | 16 |

| < 0 | < 1 | < 2 | < 3 | < 4 | < 5 | < 6 | < 7 | < 8 | < 9 |

| 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | 7 | 7 | 7 | 9 | 9 | 9 |

| 0 | 3 | 6 | 9 | 11 | 12 | 13 | 16 |

• “Counts” line gives # occurrences of each key.
• “Running sum” gives cumulative count of keys \(\leq \) each value...
• ...which tells us where to put each key:
• The first instance of key \(k \) goes into slot \(m \), where \(m \) is the number of key instances that are \(< k \).
Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

Pass 1
(by char #2)

\[
\begin{array}{cccc}
\text{be} & \text{cad} & \text{can} & \text{set} \\
\text{‘e’} & \text{‘d’} & \text{‘n’} & \text{‘t’}
\end{array}
\]

be, cad, con, can, set, cat, bat, let, bet

Pass 2
(by char #1)

\[
\begin{array}{cccc}
\text{bat} & \text{bet} & \text{cat} & \text{let} \\
\text{can} & \text{set}
\end{array}
\]

\[
\begin{array}{cccc}
\text{‘a’} & \text{‘e’} & \text{‘o’}
\end{array}
\]

cad, can, cat, bat, be, set, let, bet, con

Pass 3
(by char #0)

\[
\begin{array}{cccc}
\text{bet} & \text{con} & \text{cat} & \text{bat} \\
\text{can} & \text{set}
\end{array}
\]

\[
\begin{array}{cccc}
\text{‘b’} & \text{‘c’} & \text{‘l’} & \text{‘s’}
\end{array}
\]

bat, be, bet, cad, can, cat, con, let, set
MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

<table>
<thead>
<tr>
<th>(A)</th>
<th>posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>* set, cat, cad, con, bat, can, be, let, bet</td>
<td>0</td>
</tr>
<tr>
<td>* bat, be, bet / cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / * be, bet / cat, cad, con, can / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, can / con / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / cad / can / cat / con / let / set</td>
<td></td>
</tr>
</tbody>
</table>

Last modified: Fri Oct 26 14:54:35 2012
Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- While radix sort takes $B = N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.
And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: \(N \) insertions in time \(\lg N \) each, plus \(\Theta(N) \) to traverse, gives

\[
\Theta(N + N \lg N) = \Theta(N \lg N)
\]
Summary

• Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.

• Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.

• Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.

• Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.

• Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.