CS61B Lecture #33

Today's Readings: Graph Structures: DSIJ, Chapter 12

Why Graphs?

• For expressing non-hierarchically related items

Examples:
- Networks: pipelines, roads, assignment problems
- Representing processes: flow charts, Markov models
- Representing partial orderings: PERT charts, makefiles

Some Terminology

• A graph consists of
 - A set of nodes (aka vertices)
 - A set of edges: pairs of nodes.
 - Nodes with an edge between are adjacent.
 - Depending on problem, nodes or edges may have labels (or weights)

• Typically call node set \(V = \{v_0, \ldots \} \), and edge set \(E \).

• If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph.

• Edges are incident to their nodes.

• Directed edges exit one node and enter the next.

• A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed).

• A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph—DAG.

Some Pictures

Directed

Undirected

Acyclic:

Cyclic:

With Edge Labels:
Trees are Graphs

- A graph is **connected** if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a **free tree**. Free: we're free to pick the root; e.g.,

![Tree Diagram]

Examples of Use

- Edge = Connecting road, with length.

 ![Graph Diagram]

- Edge = Must be completed before; Node label = time to complete.

 ![Graph Diagram]

- Edge = Begat

 ![Graph Diagram]

More Examples

- Edge = some relationship

 ![Graph Diagram]

- Edge = next state might be (with probability)

 ![Graph Diagram]

- Edge = next state in state machine, label is triggering input. (Start at s. Being in state 4 means “there is a substring '001' somewhere in the input”.)

 ![Graph Diagram]

Representation

- Often useful to number the nodes, and use the numbers in edges.
- **Edge list representation:** each node contains some kind of list (e.g., linked list or array) of its successors (and possibly predecessors).

 ![Graph Diagram]

- **Edge sets:** Collection of all edges. For graph above:

 \{ (1, 2), (1, 3), (2, 3) \}

- **Adjacency matrix:** Represent connection with matrix entry:

 \[
 \begin{pmatrix}
 1 & 2 & 3 \\
 1 & 0 & 1 & 1 \\
 2 & 0 & 0 & 1 \\
 3 & 0 & 0 & 0 \\
 \end{pmatrix}
 \]
Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can’t quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:

```
0 1 4 7
3 6 8 ...
5
```

Treat 0 as the root and do recursive traversal down the two edges out of each node: \(\Theta(2^N) \) operations!

- So typically try to visit each node constant # of times (e.g., once).

Example: Depth-First Traversal

Problem: Visit every node reachable from \(v \) once, visiting nodes further from start first.

```
Stack<Vertex> fringe;

fringe = stack containing \{v\};
while (! fringe.isEmpty()) {
    Vertex v = fringe.pop();
    if (! marked(v)) {
        mark(v);
        VISIT(v);
        For each edge \((v,w)\) {
            if (! marked(w))
                fringe.push(w);
        }
    }
}
```

Replace `COLLECTION_OF_VERTICES`, `INITIAL_COLLECTION`, etc. with various types, expressions, or methods to different graph algorithms.
Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.
- That is, order the nodes \(v_0, v_1, \ldots \) such that \(v_k \) is never reachable from \(v_{k'} \) if \(k' > k \).
- Gmake does this. Also PERT charts.

```
Set<Vertex> fringe;
fringe = set of all nodes with no predecessors;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeOne ();
    add v to end of result list;
    For each edge (v, w) {
        decrease predecessor count of w;
        if (predecessor count of w == 0)
            fringe.add (w);
    }
}
```

Example

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, \(s \), to all nodes.
- "Shortest" = sum of weights along path is smallest.
- For each node, keep estimated distance from \(s, \ldots \)
- ...and of preceding node in shortest path from \(s \).

```
PriorityQueue<Vertex> fringe;
for each node v { v.dist() = \( \infty \); v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst ();
    For each edge (v, w) {
        if (v.dist() + weight(v, w) < w.dist())
            { w.dist() = v.dist() + weight(v, w); w.back() = v; }
    }
}
```

Final result: