Today:
• Sorting algorithms: why?
• Insertion Sort.
• Inversions

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Purposes of Sorting
• Sorting supports searching
• Binary search standard example
• Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
• Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions
• A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \(\preceq \), is:
 - Total: \(x \preceq y \) or \(y \preceq x \) for all \(x, y \).
 - Reflexive: \(x \preceq x \);
 - Antisymmetric: \(x \preceq y \) and \(y \preceq x \) iff \(x = y \).
 - Transitive: \(x \preceq y \) and \(y \preceq z \) implies \(x \preceq z \).
• However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called stable.

Classifications
• Internal sorts keep all data in primary memory
• External sorts process large amounts of data in batches, keeping what won’t fit in secondary storage (in the old days, tapes).
• Comparison-based sorting assumes only thing we know about keys is order
• Radix sorting uses more information about key structure.
• Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
• Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.
Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- So gives us $O(N^2)$ algorithm. Can we say more?

Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:
  ```java
  for (int i = 1; i < A.length; i += 1) {
    int j = A[i];
    for (j = i-1; j >= 0; j -= 1) {
      if (A[j].compareTo(x) <= 0) /* (1) */
        break;
    }
    A[j+1] = x;
  }
  ```
- #times (1) executes \approx how far x must move.
- If all items within K of proper places, then takes $O(KN)$ operations.
- Thus good for any amount of nearly sorted data.
- One measure of unsortedness: # of inversions: pairs that are out of order ($= 0$ when sorted, $N(N-1)/2$ when reversed).
- Each step of j decreases inversions by 1.

Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k - 1$ apart:
 - sort items #0, $2^k - 1$, $2(2^k - 1)$, $3(2^k - 1)$, \ldots, then
 - sort items #1, $1 + 2^k - 1$, $1 + 2(2^k - 1)$, $1 + 3(2^k - 1)$, \ldots, then
 - sort items #2, $2 + 2^k - 1$, $2 + 2(2^k - 1)$, $2 + 3(2^k - 1)$, \ldots, then
 - etc.
 - sort items $#2^k - 2$, $2(2^k - 1) - 1$, $3(2^k - 1) - 1$, \ldots,
 - Each time an item moves, can reduce #inversions by as much as $2^k + 1$.
- Now sort subsequences of elements $2^{k-1} - 1$ apart:
 - sort items #0, $2^{k-1} - 1$, $2(2^{k-1} - 1)$, $3(2^{k-1} - 1)$, \ldots, then
 - sort items #1, $1 + 2^{k-1} - 1$, $1 + 2(2^{k-1} - 1)$, $1 + 3(2^{k-1} - 1)$, \ldots,
 - etc.
- End at plain insertion sort ($2^0 = 1$ apart), but with most inversions gone.
- Sort is $\Theta(N^{1.5})$ (take CS170 for why!).