Today:
- Shell's sort, Heap, Merge sorts
- Quicksort
- Selection

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:
- First sort subsequences of elements \(2^k - 1\) apart:
 - sort items \(0, 2^k - 1, 2(2^k - 1), 3(2^k - 1), \ldots\), then
 - sort items \(1, 1 + 2^k - 1, 1 + 2(2^k - 1), 1 + 3(2^k - 1), \ldots\), then
 - sort items \(2, 2 + 2^k - 1, 2 + 2(2^k - 1), 2 + 3(2^k - 1), \ldots\), then
 - etc.
 - sort items \(3^k - 2, 2(2^k - 1) - 1, 3(2^k - 1) - 1, \ldots\)
 - Each time an item moves, can reduce #inversions by as much as \(2^k + 1\).
- Now sort subsequences of elements \(2^{k-1} - 1\) apart:
 - sort items \(0, 2^{k-1} - 1, 2(2^{k-1} - 1), 3(2^{k-1} - 1), \ldots\), then
 - sort items \(1, 1 + 2^{k-1} - 1, 1 + 2(2^{k-1} - 1), 1 + 3(2^{k-1} - 1), \ldots\)
 - etc.
 - sort items \(2^{k-1} - 2, 2(2^{k-1} - 1) - 1, 3(2^{k-1} - 1) - 1, \ldots\)
 - Each time an item moves, can reduce #inversions by as much as \(2^{k-1} + 1\).
- End at plain insertion sort (\(2^0 = 1\) apart), but with most inversions gone.
- Sort is \(\Theta(N^{1.5})\) (take CS170 for why!).

Example of Shell's Sort

<table>
<thead>
<tr>
<th>I</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>0</td>
<td>91</td>
</tr>
<tr>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

I: Inversions left.
C: Comparisons needed to sort subsequences.

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.
- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives \(O(N \log N)\) algorithm (\(N\) remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

Original: 19 0 -1 7 23 2 42
Heapified: 42 23 19 7 0 2 -1

End result: 19 7 2 -1 0 23 42
Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.
- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

<table>
<thead>
<tr>
<th>0 elements processed</th>
<th>1 element processed</th>
<th>2 elements processed</th>
<th>3 elements processed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quicksort: Speed through Probability

Idea:
- **Partition** data into pieces: everything $> a$ pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

<table>
<thead>
<tr>
<th>16 10 13 18</th>
<th>-4 -7 12</th>
<th>-5 19 15 0 22 29 34</th>
<th>-1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4 -5 -7 -1</td>
<td>18 13 12 10 19 15 0 22 29 34</td>
<td>16*</td>
<td></td>
</tr>
<tr>
<td>-4 -5 -7 -1</td>
<td>15 13 12* 10 0</td>
<td>16 19* 22 29 34 18</td>
<td></td>
</tr>
<tr>
<td>-4 -5 -7 -1</td>
<td>10 0</td>
<td>12 15 13</td>
<td>16 18</td>
</tr>
</tbody>
</table>

- Now everything is "close to" right, so just do insertion sort:

| -7 -5 -4 -1 | 0 10 12 13 | 15 16 18 19 22 29 34 |
Performance of Quicksort

• Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

• Obvious method: sort, select element #k, time $\Theta(N \lg N)$.

• If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.

• Get probably $\Theta(N)$ time for all k by adopting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indices $\leq m$.
 - If $m = k$, you're done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

```
13 31 21 -4 37 4 10 40 59 0 13 2 39 11 46 31
```

Looking for #10 to left of pivot 40:

```
13 31 21 -4 37 4* 11 10 39 2 0 40 59 51 49 46 60
```

Looking for #6 to right of pivot 4:

```
-4 0 2 4 37 13 11 10 39 21 31* 40 59 51 49 46 60
```

Looking for #1 to right of pivot 31:

```
-4 0 2 4 21 13 11 10 31 39 37 40 59 51 49 46 60
```

Just two elements: just sort and return #1:

```
-4 0 2 4 21 13 11 10 31 37 39 40 59 51 49 46 60
```

Result: 39

Selection Performance

• For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{cases}$$

$$= N + N/2 + \ldots + 1$$

$$= 2N - 1 \in \Theta(N)$$

• But in worst case, get $\Theta(N^2)$, as for quicksort.

• By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).