Recursive Depth-First Traversal of a Graph

- Can fix looping and combinatorial problems using the “bread-crumbs” method used in earlier lectures for a maze.

- That is, **mark** nodes as we traverse them and don’t traverse previously marked nodes.

- Makes sense to talk about **preorder** and **postorder**, as for trees.

```c
void preorderTraverse(Graph G, Node v) {
    if (v is unmarked) {
        mark (v);
        visit v;
        for (Edge (v, w) ∈ G)
            traverse(G, w);
    }
}

void postorderTraverse(Graph G, Node v) {
    if (v is unmarked) {
        mark (v);
        for (Edge (v, w) ∈ G)
            traverse(G, w);
        visit v;
    }
}
```
Recursive Depth-First Traversal of a Graph (II)

- We are often interested in traversing all nodes of a graph, not just those reachable from one node.
- So we can repeat the procedure as long as there are unmarked nodes.

```cpp
void preorderTraverse(Graph G) {
    for (v ∈ nodes of G) {
        preorderTraverse(G, v);
    }
}

void postorderTraverse(Graph G) {
    for (v ∈ nodes of G) {
        postorderTraverse(G, v);
    }
}
Topological Sorting

**Problem:** Given a DAG, find a linear order of nodes consistent with the edges.

- That is, order the nodes \( v_0, v_1, \ldots \) such that \( v_k \) is never reachable from \( v_{k'} \) if \( k' > k \).

- Gmake does this. Also PERT charts.
**Observation**: Suppose we *reverse the links* on our graph.

- If we do a recursive DFS on the reverse graph, starting from node H, for example, we will find all nodes that must come *before* H.

- When the search reaches a node in the reversed graph and there are no successors, we know that it is safe to put that node first.

- In general, a *postorder* traversal of the reversed graph visits nodes only after all predecessors have been visited.

Numbers show post-order traversal order starting from G: everything that must come before G.
General Graph Traversal Algorithm

COLLECTION_OF_VERTICES fringe;

fringe = INITIAL_COLLECTION;
while (! fringe.isEmpty()) {
    Vertex v = fringe.REMOVE_HIGHEST_PRIORITY_ITEM();

    if (! MARKED(v)) {
        MARK(v);
        VISIT(v);
        For each edge (v,w) {
            if (NEEDS_PROCESSING(w))
                Add w to fringe;
        }
    }
}

Replace COLLECTION_OF_VERTICES, INITIAL_COLLECTION, etc. with various types, expressions, or methods to different graph algorithms.
Example: Depth-First Traversal

Problem: Visit every node reachable from $v$ once, visiting nodes further from start first.

Stack<Vertex> fringe;

fringe = stack containing \{v\};
while (! fringe.isEmpty()) {
    Vertex v = fringe.pop();

    if (! marked(v)) {
        mark(v);
        VISIT(v);
        For each edge (v,w) {
            if (! marked(w))
                fringe.push(w);
        }
    }
}
Depth-First Traversal Illustrated

Marked: 

Fringe:  

Last modified: Fri Nov 21 03:39:44 2014
Topological Sort in Action

Output: []
[A]
[A, C]
[A, C, B]
[A, C, B, F]
[A, C, B, F, D]
[A, C, B, F, D, E, G, H]
Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, \( s \), to all nodes.

- “Shortest” = sum of weights along path is smallest.
- For each node, keep estimated distance from \( s \), ...
- ...and of preceding node in shortest path from \( s \).

```java
PriorityQueue<Vertex> fringe;
For each node v { v.dist() = \(\infty \); v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest \(.dist() \);
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeFirst ();
 For each edge (v,w) {
 if (v.dist() + weight(v,w) < w.dist())
 { w.dist() = v.dist() + weight(v,w); w.back() = v; }
 }
}
```
Example

Final result:

---

Shortest-path tree

\( \text{X}_d \) processed node at distance \( d \)

\( \text{Y}_d \) node in fringe at distance \( d \)

Last modified: Fri Nov 21 03:39:44 2014