Great book ⇒

The Universal History of Numbers

by Georges Ifrah

There is one handout today at the entrance!
Review

• CS61C: Learn 6 great ideas in computer architecture to enable high performance programming via parallelism, not just learn C

1. Abstraction (Layers of Representation/Interpretation)
2. Moore’s Law
3. Principle of Locality/Memory Hierarchy
4. Parallelism
5. Performance Measurement and Improvement
6. Dependability via Redundancy
Putting it all in perspective…

“If the automobile had followed the same development cycle as the computer,

– Robert X. Cringely
Data input: Analog ➔ Digital

• Real world is analog!

• To import analog information, we must do two things

 • Sample

 § E.g., for a CD, every 44,100ths of a second, we ask a music signal how loud it is.

 • Quantize

 § For every one of these samples, we figure out where, on a 16-bit (65,536 tic-mark) "yardstick", it lies.

www.joshuadysart.com/journal/archives/digital_sampling.gif
Digital data not nec born Analog…

hof.povray.org
BIG IDEA: Bits can represent anything!!

• Characters?
 • 26 letters ⇒ 5 bits ($2^5 = 32$)
 • upper/lower case + punctuation ⇒ 7 bits (in 8) (“ASCII”)
 • standard code to cover all the world’s languages ⇒ 8, 16, 32 bits (“Unicode”)
 www.unicode.com

• Logical values?
 • 0 ⇒ False, 1 ⇒ True

• colors? Ex: Red (00) Green (01) Blue (11)

• locations / addresses? commands?

• MEMORIZE: N bits ⇔ at most 2^N things
How many bits to represent π?

a) 1

b) 9 ($\pi = 3.14$, so that’s 011 “.” 001 100)

c) 64 (Since Macs are 64-bit machines)

d) Every bit the machine has!

e) ∞
What to do with representations of numbers?

- Just what we do with numbers!
 - Add them
 - Subtract them
 - Multiply them
 - Divide them
 - Compare them

Example: $10 + 7 = 17$

- ...so simple to add in binary that we can build circuits to do it!
- Subtraction just as you would in decimal
- Comparison: How do you tell if $X > Y$?
What if too big?

• Binary bit patterns above are simply **representatives** of numbers. Abstraction! Strictly speaking they are called “numerals”.

• Numbers really have an ∞ number of digits
 • with almost all being same (00…0 or 11…1) except for a few of the rightmost digits
 • Just don’t normally show leading digits

• If result of add (or -, *, /) cannot be represented by these rightmost HW bits, **overflow** is said to have occurred.
How to Represent Negative Numbers?

(C’s unsigned int, C99’s uintN_t)

• So far, **unsigned numbers**

 00000 00001 ... 01111 10000 ... 11111

• Obvious solution: define leftmost bit to be sign!
 - 0 → + 1 → –
 - Rest of bits can be numerical value of number

• Representation called **sign and magnitude**

 00000 00001 ... 01111

 11111 ... 10001 10000

META: Ain’t no free lunch
Shortcomings of sign and magnitude?

• Arithmetic circuit complicated
 • Special steps depending whether signs are the same or not

• Also, two zeros
 • $0x00000000 = +0_{\text{ten}}$
 • $0x80000000 = -0_{\text{ten}}$
 • What would two 0s mean for programming?

• Also, incrementing “binary odometer”, sometimes increases values, and sometimes decreases!

Therefore sign and magnitude abandoned
Administrivia

• Upcoming lectures
 • Next few lectures: Introduction to C

• Lab overcrowding
 • Remember, you can go to ANY discussion (none, or one that doesn’t match with lab, or even more than one if you want)
 • Overcrowded labs - consider finishing at home and getting checkoffs in lab, or bringing laptop to lab
 • If you’re checked off in 1st hour, you get an extra point on the labs!
 • TAs get 24x7 cardkey access (and will announce after-hours times)

• Enrollment
 • It will work out, don’t worry

• Soda locks doors @ 6:30pm & on weekends

• Look at class website, piazza often!

 inst.eecs.berkeley.edu/~cs61c/piazza.com
Great DeCal courses I supervise

• **UCBUGG** (3 units, P/NP)
 • UC Berkeley Undergraduate Graphics Group
 • TuTh 7-9pm in 200 Sutardja Dai
 • Learn to create a short 3D animation
 • No prereqs (but they might have too many students, so admission not guaranteed)
 • http://ucbugg.berkeley.edu

• **MS-DOS X** (2 units, P/NP)
 • Macintosh Software Developers for OS X
 • MoWe 8-10pm in 200 Sutardja Dai
 • Learn to program iOS devices!
 • No prereqs (other than interest)
 • http://msdosx.berkeley.edu
Another try: complement the bits

• Example: $7_{10} = 00111_2$ $-7_{10} = 11000_2$

• Called **One’s Complement**

• Note: positive numbers have leading 0s, negative numbers have leading 1s.

- 00000 00001 $...$ 01111

- 10000 $...$ 11110 11111

• What is -00000? Answer: 11111

• How many positive numbers in N bits?

• How many negative numbers?
Shortcomings of One’s complement?

• Arithmetic still a somewhat complicated.

• Still two zeros
 • \(0x00000000 = +0_{\text{ten}}\)
 • \(0xFFFFFFFF = -0_{\text{ten}}\)

• Although used for a while on some computer products, one’s complement was eventually abandoned because another solution was better.
Standard Negative # Representation

• Problem is the negative mappings “overlap” with the positive ones (the two 0s). Want to shift the negative mappings left by one.
 • Solution! For negative numbers, complement, then add 1 to the result

• As with sign and magnitude, & one’s compl. leading 0s ⇒ positive, leading 1s ⇒ negative
 • 000000...xxx is ≥ 0, 111111...xxx is < 0
 • except 1…1111 is -1, not -0 (as in sign & mag.)

• This representation is Two’s Complement
 • This makes the hardware simple!
 (C’s int, aka a “signed integer”)
 (Also C’s short, long long, ..., C99’s intN_t)
Two’s Complement Formula

• Can represent positive and negative numbers in terms of the bit value times a power of 2:

\[d_{31} \times -(2^{31}) + d_{30} \times 2^{30} + \ldots + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0 \]

• Example: \(1101_{\text{two}}\) in a nibble?

\[= 1 \times -(2^3) + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \]
\[= -2^3 + 2^2 + 0 + 2^0 \]
\[= -8 + 4 + 0 + 1 \]
\[= -8 + 5 \]
\[= -3_{\text{ten}} \]

Example: -3 to +3 to -3 (again, in a nibble):

<table>
<thead>
<tr>
<th>x</th>
<th>1101_{\text{two}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>x’</td>
<td>0010_{\text{two}}</td>
</tr>
<tr>
<td>+1</td>
<td>0011_{\text{two}}</td>
</tr>
<tr>
<td>()’</td>
<td>1100_{\text{two}}</td>
</tr>
<tr>
<td>+1</td>
<td>1101_{\text{two}}</td>
</tr>
</tbody>
</table>
2’s Complement Number “line”: N = 5

- 2^{N-1} non-negatives
- 2^{N-1} negatives
- one zero
- how many positives?

Binary odometer

00000 00001 ... 01111
Bias Encoding: N = 5 (bias = -15)

- \# = unsigned + bias
- Bias for N bits chosen as \(-(2^{N-1}-1)\)
- one zero
- how many positives?

00000 00001 ... 01110

Binary odometer
How best to represent -12.75?

a) 2s Complement (but shift binary pt)
b) Bias (but shift binary pt)
c) Combination of 2 encodings
d) Combination of 3 encodings
e) We can’t

Shifting binary point means “divide number by some power of 2. E.g., $11_{10} = 1011.0_2$ so $(11/4)_{10} = 2.75_{10} = 10.110_2$
And in summary...

- We represent “things” in computers as particular bit patterns: \(N \) bits \(\Rightarrow 2^N \) things

- These 5 integer encodings have different benefits; 1s complement and sign/mag have most problems.

- **unsigned** (C99’s uint\(N_t\)):

 - \(00000 \quad 00001 \quad \ldots \quad 01111 \quad 10000 \quad \ldots \quad 11111\)

- **2’s complement** (C99’s int\(N_t\)) universal, learn!

 - \(10000 \quad \ldots \quad 11110 \quad 11111\)

- **Overflow**: numbers \(\infty\); computers finite, errors!

META: We often make design decisions to make HW simple

META: Ain’t no free lunch
REFERENCE: Which base do we use?

- **Decimal**: great for humans, especially when doing arithmetic

- **Hex**: if human looking at long strings of binary numbers, it’s much easier to convert to hex and look 4 bits/symbol
 - Terrible for arithmetic on paper

- **Binary**: what computers use; you will learn how computers do +, -, *, /
 - To a computer, numbers always binary
 - Regardless of how number is written:
 - $32_{\text{ten}} = 32_{10} = 0x20 = 100000_2 = 0b100000$
 - Use subscripts “ten”, “hex”, “two” in book, slides when might be confusing
Two’s Complement for N=32

<table>
<thead>
<tr>
<th>Binary</th>
<th>Two's Complement</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 ... 0000 0000 0000 0000</td>
<td>0<sub>two</sub> =</td>
<td>0<sub>ten</sub></td>
</tr>
<tr>
<td>0000 ... 0000 0000 0000 0001</td>
<td>0<sub>two</sub> =</td>
<td>1<sub>ten</sub></td>
</tr>
<tr>
<td>0000 ... 0000 0000 0000 0010</td>
<td>0<sub>two</sub> =</td>
<td>2<sub>ten</sub></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111 ... 1111 1111 1111 1101</td>
<td>0<sub>two</sub> =</td>
<td>2,147,483,645<sub>ten</sub></td>
</tr>
<tr>
<td>0111 ... 1111 1111 1111 1110</td>
<td>0<sub>two</sub> =</td>
<td>2,147,483,646<sub>ten</sub></td>
</tr>
<tr>
<td>0111 ... 1111 1111 1111 1111</td>
<td>0<sub>two</sub> =</td>
<td>2,147,483,647<sub>ten</sub></td>
</tr>
<tr>
<td>1000 ... 0000 0000 0000 0000</td>
<td>0<sub>two</sub> =</td>
<td>−2,147,483,648<sub>ten</sub></td>
</tr>
<tr>
<td>1000 ... 0000 0000 0000 0001</td>
<td>0<sub>two</sub> =</td>
<td>−2,147,483,647<sub>ten</sub></td>
</tr>
<tr>
<td>1000 ... 0000 0000 0000 0010</td>
<td>0<sub>two</sub> =</td>
<td>−2,147,483,646<sub>ten</sub></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111 ... 1111 1111 1111 1101</td>
<td>0<sub>two</sub> =</td>
<td>−3<sub>ten</sub></td>
</tr>
<tr>
<td>1111 ... 1111 1111 1111 1110</td>
<td>0<sub>two</sub> =</td>
<td>−2<sub>ten</sub></td>
</tr>
<tr>
<td>1111 ... 1111 1111 1111 1111</td>
<td>0<sub>two</sub> =</td>
<td>−1<sub>ten</sub></td>
</tr>
</tbody>
</table>

- One zero; 1st bit called **sign bit**
- 1 “extra” negative:no positive 2,147,483,648_{ten}
Two’s comp. shortcut: Sign extension

- Convert 2’s complement number rep. using n bits to more than n bits

- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
 - 2’s comp. positive number has infinite 0s
 - 2’s comp. negative number has infinite 1s
 - Binary representation hides leading bits; sign extension restores some of them

- 16-bit -4_{ten} to 32-bit:

 $1111 1111 1111 1100_{\text{two}}$

 $1111 1111 1111 1111 1111 1111 1100_{\text{two}}$