EE 105 Discussion 4

1) Circuit Techniques:
 voltage/current division

 - Draw transconductance amplifier circuit (figure 8.5 page 467) Derive formula for voltage division
 o I = Vs/(Rin+Rs) so Vin = IRin = VRin/(Rin+Rs)
 - Do the same for current division circuit.
 o Iout = I(Rl/(Rout+Rl))
 o Il = I(Rout/(Rout+Rl))

2) Nmos/Pmos Equations
 a) Linear Region
 - From definition of current: Ids = -WvyQn (1)
 - Using the result for the inversion charge under a MOS capacitor:
 Qn = -Cox(Vgb-Vtn)
 - Replacing the value of Qn in (1), we get Ids = WvyCox(Vgs-Vtn) (2)
 where Vgs > Vtn and Vds < 0.1V
 - When Vds is small, the channel has uniform density, (so it looks like a resistor) which means the voltage in the channel must vary linearly from source to drain with a constant electric field in the channel.
 so vy = -µn*Ey and Ey = -Vds/L
 - Using this value of vy and substituting it into (2), we get:
 \[Id = \frac{W}{L} \mu n C_{ox} (V_{gs} - V_{tn}) V_{ds} \]
 b) Improved linear approximation
 - Inversion Charge at Source/Drain
 Qn(y) ≈ ½ (Qn(y=0) + Qn(y=L))
 With: Qn(y=0) = -Cox(Vgs-Vtn)
 Qn(y=L) = -Cox(Vgd-Vtn) and Vgd=Vgs-Vds
 This gives:
 \[Qn(y) \approx -C_{ox}(V_{gs} - V_{tn} - V_{ds}/2) \]
 - Using this result, we get:
 \[Id = (W/L)\mu n C_{ox} (V_{gs} - V_{tn} - V_{ds}/2)V_{ds} \] (3)
 c) Saturation Region
 - Current stops increasing when Vds = Vds_sat = Vgs-Vtn
 - Replace this in (3) and get:
 \[Id_{sat} = (W/L)(\mu n C_{ox}/2)(V_{gs} - V_{tn})^2 \]
 - Note: for pmos, µp, Vtp, Vgs and Vds are negative.

3) Track and hold circuit
Ask students reason for which improved sample and hold circuit (with pmos and nmos) is better:
- draw circuit from lecture 8 slide 27
- allows C1 to fully charge to input voltage, go over why.