1 Control Design — 25 points

Consider open loop plant

\[G(s) = \frac{K(s^2 - 2s + 2)}{(s+2)(s+4)(s+5)(s+6)} \]

with unity feedback.

a) Sketch the root locus by hand, and verify using Matlab.

b) Find the range of gain, \(K \) that makes the system stable.

The closed loop transfer function is \(\Delta(s) = (s+2)(s+4)(s+5)(s+6) + K(s^2 - 2s + 2) \). We can find
the real-axis crossing by solving $\Delta(j\omega) = 0$ for real ω and K:

$$\Delta(j\omega) = (j\omega + 2)(j\omega + 4)(j\omega + 5)(j\omega + 6) + K((j\omega)^2 - 2j\omega + 2)$$

$$= 2K + 268j\omega - K\omega^2 - 17j\omega^3 - 104\omega^2 + \omega^4 - 2Kj\omega + 240$$

Real$(\Delta(j\omega)) = 2K - K\omega^2 - 104\omega^2 + \omega^4 + 240 = 0$

Imag$(\Delta(j\omega)) = 268\omega - 2K\omega - 17\omega^3 = 0$

Enforcing $K > 0$ results in two solutions: $(K = 115.58, \omega = 1.472)$ and $(K = 115.58, \omega = -1.472)$. Since we know the root locus is attracted to zeros, we can reason that $K < 115.58$ are stable and $K \geq 115.58$ causes the poles to cross into the RHP.

c) Using a second order approximation, find the value of K that yields a closed-loop step response with 30% overshoot.

For 30% overshoot, we should search along a line of:

$$\zeta = \frac{-\ln(0.3)}{\sqrt{\pi^2 + \ln^2(0.3)}} \approx 0.3579$$

$$\theta \approx 69^\circ$$

Using MATLAB’s rlocus command,

```
hold on;
rlocus(zpk([1+1i,1-1i],[-2,-4,-5,-6],1),logspace(-2,10,100));
plot([0 10]*-cos(69*pi/180),[0 10]*sin(69*pi/180),'g');
ylim([-5 5]);
xlim([-10 5]);
```

we find that $k = 43.3$ lies roughly on this line.

d) Find all closed loop pole locations for K found in part c)

From the rlocus plot, the dominant pole locations for this gain are at $-0.553 \pm 1.5j$.

e) Compare Matlab step response for K found in part c) with second order approximation. Is the approximation used appropriate and accurate?

```
sys1 = zpk([],[-0.553+1.5j,-0.553-1.5j],1);
sys2 = feedback(zpk([1+1i 1-1i],[-2 -4 -5 -6],43.3),1);
step(sys1,syss2,[0:.01:10]);
legend('2nd order approx','Actual system');
```
For the transient response, the approximation fairly accurate although the actual system a) Lags a little because of the extra poles and b) Has a small “jerk” at the beginning due to the zeros.

2 Lead compensation — 25 points

Consider open loop plant

\[G(s) = \frac{1}{(s + 3)(s + 5)} \]

Design goals: i) Settling time of 0.67 sec, and ii) per cent overshoot of 1.5%.

a) Show that the original system without compensation can not meet the transient specification.

The closed-loop response will be:

\[G^{(closed)}(s) = \frac{K}{s^2 + 8s + 15 + K} = \frac{K}{15 + K} \cdot \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

where

\[\omega_n = \sqrt{15 + K} \]
\[\zeta = \frac{4}{\sqrt{15 + K}} \]

To meet the design goals,

\[T_s = \frac{4}{\zeta \omega_n} < 0.67 \]
\[\%OS = 100 \exp -\left(\frac{\zeta \pi}{\sqrt{1 - \zeta^2}}\right) < 1.5 \]

However,

\[T_s = \frac{4}{\left(\sqrt{15 + K} \left(\frac{4}{\sqrt{15 + K}}\right)\right)} = 1 \]
Therefore, there is no K such that the settling time will be met.

b) Show that a lead compensator $D(s) = K \frac{s + z}{s + p}$ with $z < p$ will meet the design specifications and find an acceptable set of values of k, p, and z. Verify with Matlab.

For a percent overshoot of 1.5%,

$$\zeta = \frac{-\ln(\%OS/100)}{\sqrt{\pi^2 + \ln^2(\%OS/100)}} = 0.8$$
$$\theta = \cos^{-1}(0.8) = 36.8^\circ$$

So, we “slide” down this line until we reach a settling time of $T_s = 0.67$. This gives the point, along with the 36.8° line, which defines the edge of the acceptable region for poles of the second-order approximation.

$$\text{Real}(s) = -\zeta \omega_n = -\frac{4}{T_s} = -5.97$$
$$\text{Imag}(s) = 5.97 \tan(36.8^\circ) = 4.4664$$

Now comes the question of choosing where to place the zero and pole and the proportional gain of the system, k. There are many ways to go about this, described is one way:

Choose the zero to be at -10 to attract the root locus towards it. The placement of the pole will determine the rate of which the zero is “cancelled” as k increases. We can choose it to be -40 to give the zero ample time to act to bring the root locus towards the left.

Now, we choose a k for which the root locus will cross into the desired region. The overshoot will be O.K. until the other branches threaten to cross the 36.8° line. It seems that values of k between about 20 and 35 can work for this setup. We can find this by the rlocus command in matlab. A value of $k = 572$ gives a damping of 0.805, overshoot of 1.41% and a settling time of 0.25s.

To summarize:

$$z = 10$$
$$p = 40$$
$$k = 572$$

C) Hand sketch the root locus for the original system and the system with a lead compensator, and verify with Matlab.
d) What is the steady state error $e(t)$ for the uncompensated and compensated systems?

With a gain of 572, steady state error for the compensated system is 9.5% and steady state error for uncompensated system is 2.7%.

3 Bode Plot — 30 points

Sketch the asymptotes of the Bode plot magnitude and phase for each of the following open-loop transfer functions. Verify sketch using MATLAB plot with same axes scales, and turn in.

a) $\frac{s^2 + 2s + 101}{s^3 + 101}$
\[G(s) = \frac{s^2 + 2s + 101}{s^3} = \left(\frac{s^2}{101} + 2 \frac{1}{\sqrt{101}} \frac{s}{\sqrt{101}} + 1 \right) \cdot 101 \cdot \frac{1}{s^3} \]

(1)

Zeros: second-order zeros with \(\zeta = \frac{1}{\sqrt{101}} \), \(\omega_n = \sqrt{101} \approx 10 \)

Poles: three first-order poles at \(s = 0 \)

Start the graph off at \(\omega = 1 \), a decade below the breakpoint of the zeros. Evaluate \(G(j1) \). We can ignore the second-order zeros here; the gain is 101, or approx. 40 dB. The phase is -270° (-90° for each of the poles).

The magnitude asymptote is originally sloped at -60 dB/dec (three poles), until the breakpoint of the zeros, after which the slope is -20 dB/dec. The phase changes from -270° to -90° over two decades \((s = j1 \text{ to } s = j100) \).

\[G(s) = \frac{10^3}{(s+1)(s^2 + 2s + 101)} = \frac{1000}{101} \frac{1}{s+1} \frac{1}{s^2} + 2 \frac{1}{\sqrt{101}} \frac{s}{\sqrt{101}} + 1 \]

(2)

Zeros: none

Poles: a second-order pair with \(\zeta = \frac{1}{\sqrt{101}} \), \(\omega_n = \sqrt{101} \approx 10 \); a first-order pole at \(s = -1 \).

Start the plot at low frequencies \((j\omega \text{ approaches zero}) \). \(G(j\omega \rightarrow 0) \approx \frac{1000}{101} \approx 20 \text{ dB} \). The phase at low frequencies is zero. The first-order pole has its breakpoint at \(\omega = 1 \) while the second-order pole pair have their breakpoint at \(\omega \approx 10 \).
c) $\frac{s+1}{(s+10)(s+30)}$

$$G(s) = \frac{s+1}{(s+10)(s+30)} = \frac{1}{300} \left(\frac{s+1}{s+10} + \frac{1}{s+30} \right)$$

Zeros: one first-order zero at $s = -1$
Poles: one first-order pole at $s = -10$ and one first-order pole at $s = -30$.
At low frequencies, $G(j\omega) \approx \frac{1}{300} \approx -50\text{ dB}$; the phase is zero.

d) $\frac{s^2+40s+10^4}{s^2+10s+100}$
\[G(s) = \frac{s^2 + 40s + 10^4}{s^2 + 10s + 100} = \frac{10^4}{100} \left(\frac{s^2 + 2 \cdot \frac{40}{10^2} s + 1}{s + 2 \cdot \frac{5}{10} 10s + 100} \right) \]

(4)

Zeros: second order pair with \(\zeta = \frac{40}{100}, \omega_n = 100 \)
Poles: second order pair with \(\zeta = \frac{5}{10}, \omega_n = 10 \)
At low frequencies, \(G(j\omega) \approx 100 \approx 40 \text{ dB}, \) zero phase.

e) \[\frac{10^4}{(s + 0.1)(s + 3)(s + 30)} \]

\[G(s) = \frac{10^4}{(s + 0.1)(s + 3)(s + 30)} = \frac{10^4}{0.1 \cdot 3 \cdot 30} \left(\frac{1}{s + 0.1} + \frac{1}{s + 3} + \frac{1}{s + 30} + 1 \right) \]

(5)

Zeros: none
Poles: first order poles at \(s = -0.1, -3, -30 \)
At low frequencies, \(G(j\omega) \approx 1111 \approx 60 \text{ dB}, \) zero phase.
4 Compensation Network — 20 points

For the ideal op amp circuit:

a) Determine the transfer function $T(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)}$.

Use KCL at the negative terminal of the op amp.

\[
\frac{V_{\text{in}}(s)}{R_2 + \frac{1}{C_2 s}} + \frac{V_{\text{out}}(s)}{R_1 + \frac{1}{R_3 + C_1 s}} = 0
\]

\[
\frac{-V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{R_1 + \frac{1}{R_3 + C_1 s}}{R_2 + \frac{1}{C_2 s}}
\]

\[
\frac{-V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{R_1 C_2 s \left(\frac{1}{R_3} + C_1 s \right) + C_2 s}{(R_2 C_2 s + 1) \left(\frac{1}{R_3} + C_1 s \right)}
\]

\[
\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{-R_1 C_1 C_2 s^2 - \left(\frac{R_1 C_2}{R_3} + C_2 \right) s}{R_2 C_1 C_2 s^2 + \left(\frac{R_1 C_2}{R_3} + C_1 \right) s + \frac{1}{R_3}}
\]

b) Hand sketch the Bode plot for magnitude and phase for $R_1 = 1K$ Ω, $R_2 = 10K$ Ω, $R_3 = 100K$ Ω, $C_1 = 1000$ nF, and $C_2 = 1000$ nF.

Replace the values in the transfer function above with the component values.

\[
\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{-\left(10^3 \times 10^{-6} \times 10^{-6} \right) s^2 - \left(10^3 \times 10^{-6} \times 10^{-5} + 10^{-6} \right) s}{\left(10^4 \times 10^{-6} \times 10^{-6} \right) s^2 + \left(10^4 \times 10^{-6} \times 10^{-5} + 10^{-6} \right) s + (10^{-5})}
\]

\[
= \frac{-\left(10^{-9} \right) s^2 - (1.01 \times 10^{-6}) s}{\left(10^{-8} \right) s^2 + (1.1 \times 10^{-6}) s + (10^{-5})}
\]

9
Manipulate the TF to break it into standard forms

\[
= -s(10^{-9}s + 1.01 \times 10^{-6}) \cdot \frac{10^8}{s^2 + 110s + 1000}
\]

\[
= \frac{-(1010)(10^5)}{10^9} s \left(\frac{s}{1010} + 1 \right) \frac{1}{s^2 + 2 \frac{55}{\sqrt{1000}} \frac{s}{\sqrt{1000}} + 1}
\]

Zeros: first-order zeros at \(s = 0, s = -1010 \)

Poles: second-order pair with \(\zeta = \frac{55}{\sqrt{1000}} \approx 1.74, \omega_n = \sqrt{1000} \approx 31.6. \)

Because of the zero at \(s = 0 \), we can’t start the plot at “low frequencies”. Instead we must choose a \(\omega \) small enough so that the other poles/zeros can be ignored, and evaluate there. \(\omega = 1 \) is more than a decade lower than everything else. \(G(j1) \approx -0.101 \): so magnitude -20dB, phase 270° (180° for the negative sign, 90° for the first-order zero). The slope of the magnitude in this region is 20 dB/dec because of the zero.

c) Verify sketch using MATLAB plot with same axes scales, and turn in.