Lecture 1: Admin & Overview

- Announcements:
 - EE 140/240A: Analog Integrated Circuits
 - Instructor: Prof. Clark T.-C. Nguyen
 - Go through
 - Course information sheet
 - Syllabus
 - Grading Information and Policy
 - Hand out class account sheets
 - For the course website, just google ee140
 - The website should be up and running in a couple of days
 - EE 140 screencast previously
 - If you miss a lecture …
 - Can view previous year lectures at either
 - http://itunes.berkeley.edu/
 - http://www.youtube.com/ucberkeley
 - But that there’ll be some differences this semester
 - This course now “contains” EE 240A
 - EE 240A same as 140, but with additional material for graduate students, mainly MEng
 - Additional homework problems
 - Additional project specs, or different project altogether
 - This course also supports the new MAS-IC program
 - MAS-IC: a new “remote” degree
 - Pro: more professional recording
 - Con: need to put up with “hollywood-like” logistics

- Office Hour Changes?: Nguyen Wed → 1-2 p.m.
- Discussion sections start next week

- Last Time:
 - Review of bipolar transistors by your TA
 - I’m here today, of course
 - But I will be traveling again next Tuesday, so another of your TA’s will lecture on MOS transistor design

- Lecture Topics:
 - Review
 - Ideal Op Amps
 - Non-Ideal Op Amps
 - Op Amp Examples

Review of OpAmp

Ideal Op Amp:
Properties of Op Amps:
1. $A \to \infty \Rightarrow N_+ = N_-$
2. $R_+ \to \infty \Rightarrow i_+ = 0$
3. $R_- = 0$
4. Infinite Bandwidth:
 \[N_0 = A(N_+ - N_-) \]

Inverting Amplifier:
1. Verify that we have (-) FB.
2. $N_0 = \text{finite} \Rightarrow N_+ : N_-
\[i_i = \frac{N_i - 0}{R_1} = \frac{V_i}{R_1} \quad N_0 = 0 - i_i R_2 \]

Par. FB Example:
\[N_0 = -\frac{N_i}{R_2} \]

\[N_0 = -\frac{R_2}{R_1} \]