EE247
Lecture 11

• Filters (continued)
 – Example: Switched-capacitor filters in CODEC integrated circuits
 – Switched-capacitor filter design summary
 – Comparison of various filter topologies

• New Topic: Data Converters

Summary
Last Lecture

• Switched-capacitor filters
 – Switched-capacitor integrators
 • LDI integrators
 • Effect of parasitic capacitance
 • Bottom-plate integrator topology
 – Resonators
 – Bandpass filters
 – Lowpass filters
 • Termination implementation
 • Transmission zero implementation
 – Switched-capacitor filter design considerations
 – Effect of non-idealities
 – Switched-capacitor filters utilizing double sampling technique
Switched-Capacitor Filter Application
Example: Voice-Band CODEC (Coder-Decoder) Chip

CODEC Transmit Path
Lowpass Filter Frequency Response

Note: $f_s = 128$ kHz
Low Q bandpass (Q<1) filter shape → Implemented with lowpass followed by highpass
CODEC Transmit Path

Clocking & Anti-Aliasing Scheme

First filter (1st order RC type) performs anti-aliasing for the next S.C. biquad

The 1st & 2nd stage filters form 3rd order elliptic LPF with corner frequency @ 32kHz \(\rightarrow\) Anti-aliasing for the next lowpass filter

The stages prior to the high-pass perform anti-aliasing for high-pass

- Notice gradual lowering of clock frequency \(\rightarrow\) Ease of anti-aliasing

SC Filter Summary

- Pole and zero frequencies proportional to
 - Sampling frequency \(f_s\)
 - Capacitor ratios
 - High accuracy and stability in response
 - Long time constants realizable without requiring large value \(R\)
- Compatible with transconductance amplifiers
 - Reduced circuit complexity, power dissipation
- Amplifier bandwidth requirements less stringent compared to CT filters (low frequencies only)
- Issue: Sampled-data filters \(\rightarrow\) require anti-aliasing prefiltering
Switched-Capacitor Filters versus Continuous-Time Filter Limitations

Considering overall effects of:

- Opamp finite slew rate
- Opamp finite unity-gain-bandwidth
- Opamp settling issues
- Clock feedthru
- Switch+ sampling cap. finite time-constant

→ Limited switched-capacitor filter performance frequency range

Summary
Filter Performance versus Filter Topology

<table>
<thead>
<tr>
<th></th>
<th>Max. Usable Bandwidth</th>
<th>SNDR</th>
<th>Freq. tolerance w/o tuning</th>
<th>Freq. tolerance + tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opamp-RC</td>
<td>~10MHz</td>
<td>60-90dB</td>
<td>+30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Opamp-MOSFET-C</td>
<td>~5MHz</td>
<td>40-60dB</td>
<td>+30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Opamp-MOSFET-RC</td>
<td>~5MHz</td>
<td>50-90dB</td>
<td>+30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Gm-C</td>
<td>~100MHz</td>
<td>40-70dB</td>
<td>+40-60%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Switched Capacitor</td>
<td>~10MHz</td>
<td>40-90dB</td>
<td><<1%</td>
<td>–</td>
</tr>
</tbody>
</table>
Material Covered in EE247
Where are We?

✓ Filters
 – Continuous-time filters
 • Biquads & ladder type filters
 • Opamp-RC, Opamp-MOSFET-C, gm-C filters
 • Automatic frequency tuning
 – Switched capacitor (SC) filters

• Data Converters
 – D/A converter architectures
 – A/D converter
 • Nyquist rate ADC- Flash, Pipeline ADCs,….
 • Oversampled converters
 • Self-calibration techniques

• Systems utilizing analog/digital interfaces

Data Converters
Suggested Reference Texts

Data Converter Basics

- DSPs benefited from device scaling
- However, real world signals are still analog:
 - Continuous time
 - Continuous amplitude
- DSP can only process:
 - Discrete time
 - Discrete amplitude
 \[\rightarrow\] Need for data conversion from analog to digital and digital to analog

A/D & D/A Conversion

A/D Conversion

- Analog In
- Anti-alias Filtering
- Sampling
- Quantization
- Digital Filter
- Digital Coding
- Digital Out

D/A Conversion

- Digital In
- Digital Filter
- Digital Decoding
- DAC
- Analog Hold
- Reconstruction Filtering
- Analog Out
Data Converters

• Stand alone data converters
 – Used in variety of systems
 – Example: Analog Devices AD9235 12bit/ 65Ms/s ADC- Applications:
 • Ultrasound equipment
 • IF sampling in wireless receivers
 • Various hand-held measurement equipment
 • Low cost digital oscilloscopes

Data Converters

• Embedded data converters
 – Integration of data conversion interfaces along with DSPs and/or RF circuits → Cost, reliability, and performance
 – Main issues
 • Feasibility of integrating sensitive analog functions in a technology typically optimized for digital performance
 • Down scaling of supply voltage as a result of downscaling of feature sizes
 • Interference & spurious signal pick-up from on-chip digital circuitry and/or high frequency RF circuits
 • Portable applications dictate low power consumption
Example: Typical Cell Phone

Contains in integrated form:

- 4 Rx filters
- 4 Tx filters
- 4 Rx ADCs
- 4 Tx DACs
- 3 Auxiliary ADCs
- 8 Auxiliary DACs

Total: Filters → 8
ADCs → 7
DACs → 12

D/A Converter Transfer Characteristics

- An ideal digital-to-analog converter:
 - Accepts digital inputs b_1-b_n
 - Produces either an analog output voltage or current
 - Assumption (will be revisited)
 - Uniform, binary digital encoding
 - Unipolar output ranging from 0 to V_{FS}

Nomenclature:

- $N = \text{# of bits}$
- $V_{FS} = \text{full scale output}$
- $\Delta = \text{min. step size} \rightarrow \text{ILSB}$
- $\Delta = \frac{V_{FS}}{2^N}$
- $or \ N = \log_2 \frac{V_{FS}}{\Delta} \rightarrow \text{resolution}$
D/A Converter Transfer Characteristics

\[N = \# \text{of bits} \]
\[V_{FS} = \text{full scale output} \]
\[\Delta = \text{min. step size} \rightarrow \text{LSB} \]
\[\Delta = \frac{V_{FS}}{2^N} \]

\[V_0 = V_{FS} \sum_{i=1}^{N} b_i 2^{-i} \]
= \Delta \times \sum_{i=1}^{N} b_i 2^{-N-i}, \quad b_i = 0 \text{ or } 1

binary-weighted

\[V_0 = V_{FS} \sum_{i=1}^{N} b_i 2^{-i} \]
\[= \Delta \times \sum_{i=1}^{N} b_i 2^{-N-i}, \quad b_i = 0 \text{ or } 1 \]

Note: \(D(b_i = 1, \text{all} i) \)
\[\rightarrow V_0^{\text{max}} = V_{FS} - \Delta \]
\[\rightarrow V_0^{\text{max}} = V_{FS} \left(1 - \frac{1}{2^N}\right) \]

Example: D/A with 3-bit Resolution

Example: \(N = 3 \)
Assume \(V_{FS} = 0.8V \)
Input code is 101
\[V_0 = \Delta \left(b_1 \times 2^2 + b_2 \times 2^1 + b_3 \times 2^0\right) \]
Then: \(\Delta = V_{FS} / 2^3 = 0.4V \)
\[\rightarrow V_0 = 0.4V \left(1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0\right) = \]
\[\rightarrow V_0 = 0.5V \]
Note: MSB \(\rightarrow V_{FS} / 2 \) \& LSB \(\rightarrow V_{FS} / 2^N \)
Ideal 3-Bit D/A Transfer Characteristic

- Ideal DAC introduces no error!
- One-to-one mapping from input to output

<table>
<thead>
<tr>
<th>Digital Input Code</th>
<th>Analog Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>V_{FS}</td>
</tr>
<tr>
<td>001</td>
<td>$V_{FS}/2$</td>
</tr>
<tr>
<td>010</td>
<td>$V_{FS}/8$</td>
</tr>
<tr>
<td>011</td>
<td>$V_{FS}/8$</td>
</tr>
<tr>
<td>100</td>
<td>$V_{FS}/8$</td>
</tr>
<tr>
<td>101</td>
<td>$V_{FS}/8$</td>
</tr>
<tr>
<td>110</td>
<td>$V_{FS}/8$</td>
</tr>
<tr>
<td>111</td>
<td>$V_{FS}/8$</td>
</tr>
</tbody>
</table>

Step Height (1 LSB Δ)

A/D Converter Transfer Characteristics

- An ideal analog-to-digital converter:
 - Accepts analog input in the form of either voltage or current
 - Produces digital output either in serial or parallel form
- Assumption (will be revisited)
 - Unipolar input ranging from 0 to V_{FS}
 - Uniform, binary digital encoding

$V_{FS} =$ full scale output

\[\Delta = \min \text{ resolvable input } \rightarrow \text{ILSB} \]

\[\Delta = \frac{V_{FS}}{2^N} \]

or

\[N = \log_2 \frac{V_{FS}}{\Delta} \rightarrow \text{resolution} \]
Ideal A/D Transfer Characteristic

- Ideal ADC introduces error with max peak-to-peak: $\rightarrow (+1/2 \Delta)$
 $\Delta = V_{FS}/2^N$

 $N =$ # of bits

- This error is called "quantization error"

Non-Linear Data Converters

- So far data converter characteristics studied are with uniform, binary digital encoding

- For some applications to maximize dynamic range non-linear coding is used e.g. Voice-band telephony,
 - Small signals \rightarrow larger # of codes
 - Large signals \rightarrow smaller # of codes
Example: Non-Linear A/D Converter
For Voice-Band Telephony Applications

Non-linear ADC and DAC used in voice-band CODECs

- To maximize dynamic range without need for large # of bits
- Non-linear Coding scheme called A-law & μ-law is used
- Also called companding

Data Converter Performance Metrics

- Data Converters are typically characterized by static, time-domain, & frequency domain performance metrics:
 - Static
 - Monotonicity
 - Offset
 - Full-scale error
 - Differential nonlinearity (DNL)
 - Integral nonlinearity (INL)
 - Dynamic
 - Delay, settling time
 - Aperture uncertainty
 - Distortion-harmonic content
 - Signal-to-noise ratio (SNR), Signal-to-(noise+distortion) ratio (SNDR)
 - Idle channel noise
 - Dynamic range & spurious-free dynamic range (SFDR)
Typical Sampling Process

CT ⇒ SD ⇒ DT

Continuous Time

Sampled Data (e.g. T/H signal)

Clock

Discrete Time

Physical Signals

"Memory Content"

Discrete Time Signals

• A sequence of numbers (or vector) with discrete index time instants

• Intermediate signal values not defined (not the same as equal to zero!)

• Mathematically convenient, non-physical

• We will use the term "sampled data" for related signals that occur in real, physical interface circuits
Uniform Sampling

- Samples spaced T seconds in time
- Sampling Period $T \iff$ Sampling Frequency $f_s = 1/T$
- Problem: Multiple continuous time signals can yield exactly the same discrete time signal (aliasing)

Data Converters

- ADC/DACs need to *sample/reconstruct* to convert from continuous-time to discrete-time signals and back
- Purely mathematical discrete-time signals are different from "sampled-data signals" that carry information in actual circuits
- Question: How do we ensure that sampling/reconstruction fully preserve information?
Aliasing

- The frequencies f_x and $nf_s \pm f_x$, n integer, are indistinguishable in the discrete time domain.

- Undesired frequency interaction and translation due to sampling is called aliasing.

- If aliasing occurs, no signal processing operation downstream of the sampling process can recover the original continuous time signal!

Frequency Domain Interpretation

Signal scenario before sampling

Signal scenario after sampling \rightarrow DT

\rightarrow Signals $@ nf_s \pm f_{max_signal}$ fold back into band of interest

\rightarrow Aliasing
Brick Wall Anti-Aliasing Filter

Sampling at Nyquist rate \((f_s=2f_{\text{signal}}) \) → required brick-wall anti-aliasing filters

Practical Anti-Aliasing Filter

- Practical filter: Nonzero "transition band"
- In order to make this work, we need to sample faster than 2x the signal bandwidth
- "Oversampling"
Practical Anti-Aliasing Filter

Data Converter Classification

- $f_s > 2f_{\text{max}}$ Nyquist Sampling
 - "Nyquist Converters"
 - Actually always slightly oversampled (e.g. CODEC $f_{\text{sig}\text{max}} = 3.4\text{kHz}$ &
 - ADC sampling $8\text{kHz} \rightarrow f_s/f_{\text{max}} = 2.35$)
 - Requires anti-aliasing filtering prior to A-to-D conversion

- $f_s >> 2f_{\text{max}}$ Oversampling
 - "Oversampled Converters"
 - Anti-alias filtering is often trivial
 - Oversampling is also used to reduce quantization noise, see later
 in the course...

- $f_s < 2f_{\text{max}}$ Undersampling (sub-sampling)
Sub-Sampling

- Sub-sampling → sampling at a rate less than Nyquist rate → aliasing
- For signals centered @ an intermediate frequency → Not destructive!
- Sub-sampling can be exploited to mix a narrowband RF or IF signal down to lower frequencies

Nyquist Data Converter Topics

- Basic operation of data converters
 - Uniform sampling and reconstruction
 - Uniform amplitude quantization
- Characterization and testing
- Common ADC/DAC architectures
- Selected topics in converter design
 - Practical implementations
 - Compensation & calibration for analog circuit non-idealities
- Figures of merit and performance trends
Where Are We Now?

• We now know how to preserve signal information in CT → DT transition

• How do we go back from DT → CT?

Ideal Reconstruction

\[x(k) \Rightarrow x(t) \]

• The DSP books tell us:

\[x(t) = \sum_{k=-\infty}^{\infty} x(k) \cdot g(t-kT) \quad g(t) = \frac{\sin(2\pi f t)}{2\pi f t} \]

• Unfortunately not all that practical...
Zero-Order Hold Reconstruction

- How about just creating a staircase, i.e. hold each discrete time value until new information becomes available?
- What does this do to the frequency content of the signal?
- Let's analyze this in two steps...

DT→CT: Infinite Zero Padding

Time Domain

Frequency Domain

Next step: pass the samples through a sample & hold block (ZOH)
Hold Pulse $T_p = T_s$ Transfer Function

\[|H(f)| = \frac{\sin(\pi f T_s)}{\pi f T_s} \]

ZOH Spectral Shaping

- Continuous Time Pulse Train Spectrum
- ZOH Transfer Function ("Sinc Shaping")
- ZOH output, Spectrum of Staircase Approximation
Smoothing Filter

- Order of the filter required is a function of oversampling ratio.
- High oversampling helps reduce filter order requirement.
- Filter out the high frequency content associated with staircase shape of the signal.

Summary

- Sampling theorem $f_s > 2f_{max}$ usually dictates anti-aliasing filter.
- If theorem is met, CT signal can be recovered from DT without loss of information.
- ZOH and smoothing filter reconstruct CT signal from DT vector.
- Oversampling helps reduce order & complexity of anti-aliasing & smoothing filters.
Next Topic

- Done with "Quantization in time"

- Next: Quantization in amplitude

Ideal ADC ("Quantizer")

- Accepts & analog input & generates it’s digital representation
- Quantization step:
 \[\Delta (= 1 \text{ LSB}) \]
- Full-scale input range:
 \[-0.5\Delta \ldots (2^N-0.5)\Delta \]
- E.g. \(N = 3 \) Bits
 \[V_{FS} = -0.5\Delta \text{ to } 7.5\Delta \]
Quantization Error

- Quantization error → Difference between analog input and output of the ADC converted to analog via an ideal DAC

- Called:
 - Quantization error
 - Residue
 - Quantization noise

![Diagram](attachment://quantization_error_diagram.png)

For an ideal ADC:
- Quantization error is bounded by $-\Delta/2 \ldots +\Delta/2$ for inputs within full-scale range

![Graph](attachment://quantization_error_graph.png)
ADC Dynamic Range

- Assuming quantization noise is much larger compared to circuit generated noise:

\[D.R._{\text{Maximum}} = 10 \log \frac{\text{Full Scale Signal Power}}{\text{Quantization Noise Power}} \]

- Crude assumption: Same peak/rms ratio for signal and quantization noise!

\[D.R._{\text{Maximum}} = 20 \log \frac{\text{Peak Full Scale}}{\text{Peak Quantization Noise}} \]

\[= 20 \log \frac{V_{FS}}{\Delta} = 20 \log 2^N = 6.02 \times N \ [\text{dB}] \]

Question: What is the quantization noise power?

Quantization Error

Let us assume \(V_{in} \) is a ramp signal with amplitude equal to ADC full-scale

![Quantization Error Diagram]

Note: Quantization error waveform \(\rightarrow \) periodic and also ramp
Quantization Error

Need to find the *rms* value for quantization error waveform:

\[\varepsilon_{eq}^2 = \frac{1}{T} \int_{-\Delta/2}^{+\Delta/2} (k \times t)^2 \, dt = \frac{\Delta^2}{k} \int_{-\Delta/2k}^{+\Delta/2k} t^2 \, dt \]

\[= \frac{\Delta \times k^2}{k} \int_{-\Delta/2k}^{+\Delta/2k} t^2 \, dt \]

\[\rightarrow \varepsilon_{eq}^2 = \frac{\Delta^2}{12} \rightarrow \text{Independent of } k \]

\[\varepsilon_{eq} = \frac{\Delta}{\sqrt{12}} \]

In general above equation applies if:

- Input signal much larger than 1LSB
- Input signal busy
- No signal clipping

Quantization Error PDF

- Probability density function (PDF) Uniformly distributed from
 \[-\Delta/2 \ldots +\Delta/2\] provided that:
 - Busy input
 - Amplitude is many LSBs
 - No overload
- Not Gaussian!

- Zero mean
- Variance

\[\varepsilon = \int_{-\Delta/2\Delta}^{+\Delta/2\Delta} \frac{\Delta^2}{12} \, d\varepsilon \]

Signal-to-Quantization Noise Ratio

- If certain conditions the quantization error can be viewed as being "random", and is often referred to as "noise"

- In this case, we can define a peak "signal-to-quantization noise ratio", SQNR, for sinusoidal inputs:
 \[SQNR = \left(\frac{1}{2N} \right)^2 \frac{\Delta^2}{12} = 1.5 \times 2^{2N} \]

 - Electronic noise
 - Deviations from the ideal quantization levels

Real converters do not quite achieve this performance due to other sources of error:
- Electronic noise
- Deviations from the ideal quantization levels

\[SQNR = 6.02N + 1.76 \text{ dB} \quad \text{Accurate for } N > 3 \]

SQNR Measurement

- \[20 \log(SQNR) \]
- \[SQNR_{peak} = 6.02N + 1.76 \text{ dB} \]
Static Ideal Macro Models

![Diagram of ADC and DAC](image1)

Cascade of Data Converters

![Diagram of ADC and DAC cascade](image2)
Static Converter Errors

Deviation of converter characteristics from ideal:
- Offset
- Full-scale error
- Differential nonlinearity \rightarrow DNL
- Integral nonlinearity \rightarrow INL

Full-Scale Error

ADC

Ideal full-scale point

Actual full-scale point

(1/2 LSB)

Digital Output Code

Analog Input Value (LSB)

000

0

5

6

7

111

110

111

101

000

0

1

2

3

4

5

6

7

DAC

Ideal full-scale point

Actual full-scale point

(-1 1/4 LSB)

Digital Input Code

Analog Output Value (LSB)

000

0

100

101

110

111

 Offset and Full-Scale Error

Note:

→ For further measurements (DNL, INL) connecting the endpoints & deriving ideal codes based on the non-ideal endpoints eliminates offset and full-scale error
Offset and Full-Scale Errors

- Alternative specification in % Full-Scale = 100% * (of LSB value)/ 2^N
- Gain error can be extracted from offset & full-scale error
- Non-trivial to build a converter with extremely good full-scale/offset specs
- Typically full-scale/offset is most easily compensated by the digital pre/post-processor
- More critical: Linearity measures \rightarrow DNL, INL

ADC Differential Nonlinearity

1. Endpoints connected
2. Ideal characteristics derived eliminating offset & full-scale error
3. DNL measured
ADC Differential Nonlinearity

- Ideal ADC transitions point equally spaced by 1LSB
- For DNL measurement, offset and full-scale error is eliminated
- DNL [k] (a vector) measures the deviation of each code from its ideal width
- Typically, the vector for the entire code is reported
- If only one DNL # is reported that would be the worst case

Example
Compute Offset, Full-Scale Error, & DNL

A 3bit ADC is designed to have an ideal:
\[\text{LSB} = 0.1V \]

The measured transitions levels for the end product is shown in the table below, compute offset, full-scale, gain error, & DNL

1- Offset: (real transition-ideal)\(= -0.03V\),
in LSB\(\rightarrow -0.03/0.1 = -0.3\) LSB

2- Full-scale error (real last transition-ideal)
\[= 0.68 - 0.65 = 0.03V \]
in LSB\(\rightarrow 0.03/0.1 = +0.3\) LSB

3- LSB after correcting for offset & full-scale error:
\[\text{LSB} = \frac{(\text{Last transition-first transition})(2^N-2)}{2} \]
\[\text{LSB} = (0.68 - 0.02)/6 = 0.11V \]

<table>
<thead>
<tr>
<th>Transition #</th>
<th>Ideal transition point [V]</th>
<th>Real transition point [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>5</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>6</td>
<td>0.55</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>0.65</td>
<td>0.68</td>
</tr>
</tbody>
</table>
ADC Differential Nonlinearity Example

\[V_{FS} = 2^N \times 0.11V = 0.88V \]

4- Gain relative to ideal
Gain = 0.8/0.88 = 0.9

Find all code widths
\[\text{Width}[k] = \text{Transition}[k+1] - \text{Transition}[k] \]
- Divide code width by LSB \(W[k] \)

5- Find DNL:
\[\text{DNL}[k] = W[k] - \text{LSB} \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0.13</td>
<td>1.18</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.45</td>
<td>-0.55</td>
</tr>
<tr>
<td>3</td>
<td>0.17</td>
<td>1.55</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.45</td>
<td>-0.55</td>
</tr>
<tr>
<td>5</td>
<td>0.08</td>
<td>0.73</td>
<td>-0.27</td>
</tr>
<tr>
<td>6</td>
<td>0.18</td>
<td>1.64</td>
<td>0.64</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
ADC Differential Nonlinearity Examples

ADC DNL

- DNL=-1 implies missing code
- For an ADC DNL < -1 not possible → undefined
- Can show:

\[
\sum_{i} DNL[i] = 0
\]

- For a DAC DNL < -1 possible