EE27 - Lecture 2
Filters

- From last lecture:
 - Dynamic range of analog circuits

- Filters:
 - Nomenclature
 - Specifications
 - Quality factor
 - Frequency characteristics
 - Group delay
 - Filter types
 - Butterworth
 - Chebyshev I & II
 - Elliptic
 - Bessel
 - Group delay comparison example
 - Biquads

Nomenclature
Filter Types

- Lowpass
- Highpass
- Bandpass
- Band-reject (Notch)
- All-pass

Provide frequency selectivity
Phase shaping or equalization
Filter Specifications

- Frequency characteristics (lowpass filter):
 - Passband ripple (Rpass)
 - Cutoff frequency or -3dB frequency
 - Stopband rejection
 - Passband gain
- Phase characteristics:
 - Group delay
- SNR (Dynamic range)
- SNDR (Signal to Noise+Distortion ratio)
- Linearity measures: IM3 (intermodulation distortion), HD3 (harmonic distortion), IIP3 or OIP3 (Input-referred or output-referred third order intercept point)
- Power/pole & Area/pole

Lowpass Filter Frequency Characteristics
Quality Factor (Q)

- The term quality factor (Q) has different definitions in different contexts:
 - Component quality factor (inductor & capacitor Q)
 - Pole quality factor
 - Bandpass filter quality factor

- Next 3 slides clarifies each

Component Quality Factor (Q)

- For any component with a transfer function:

 \[H(j\omega) = \frac{1}{R(\omega) + jX(\omega)} \]

- Quality factor is defined as:

 \[Q = \frac{X(\omega)}{R(\omega)} \rightarrow \frac{\text{Energy Stored}}{\text{Average Power Dissipation}} \text{ per unit time} \]
Inductor & Capacitor Quality Factor

- Inductor Q_L:
 \[Y_L = \frac{1}{R_s + j\omega L} \quad Q_L = \frac{\omega L}{R_s} \]

- Capacitor Q_C:
 \[Z_C = \frac{1}{R_p + j\omega C} \quad Q_C = \omega C R_p \]

Pole Quality Factor

\[Q_{Pole} = \frac{\omega_p}{2\sigma_x} \]
Bandpass Filter Quality Factor (Q)

![Diagram of Bandpass Filter Quality Factor](image)

$Q = \frac{f_{\text{center}}}{\Delta f}$

What is Group Delay?

- Consider a continuous time filter with s-domain transfer function $G(s)$:

$$G(j\omega) = |G(j\omega)| e^{j\theta(\omega)}$$

- Let us apply a signal to the filter input composed of sum of two sinewaves at slightly different frequencies ($\Delta \omega << \omega$):

$$v_{\text{in}}(t) = A_1 \sin(\omega t) + A_2 \sin[(\omega + \Delta \omega) t]$$

- The filter output is:

$$v_{\text{out}}(t) = A_1 |G(j\omega)| \sin(\omega t + \theta(\omega)) + A_2 |G[j(\omega + \Delta \omega)]| \sin[(\omega + \Delta \omega)t + \theta(\omega + \Delta \omega)]$$
What is Group Delay?

\[v_{\text{out}}(t) = A_1 |G(j\omega)| \sin \left\{ \omega \left[t + \frac{\theta(\omega)}{\omega} \right] \right\} + \]

\[+ A_2 |G[j(\omega+\Delta\omega)]| \sin \left\{ (\omega+\Delta\omega) \left[t + \frac{\theta(\omega+\Delta\omega)}{\omega+\Delta\omega} \right] \right\} \]

Since \(\frac{\Delta\omega}{\omega} \ll 1 \) then \(\left[\frac{\Delta\omega}{\omega} \right]^2 \rightarrow 0 \)

\[\frac{\theta(\omega+\Delta\omega)}{\omega+\Delta\omega} \equiv \left[\theta(\omega) + \frac{d\theta(\omega)}{d\omega} \Delta\omega \right] \left[\frac{1}{\omega} \left(1 - \frac{\Delta\omega}{\omega} \right) \right] \]

\[\equiv \frac{\theta(\omega)}{\omega} + \left(\frac{d\theta(\omega)}{d\omega} - \frac{\theta(\omega)}{\omega} \right) \frac{\Delta\omega}{\omega} \]

What is Group Delay?

Signal Magnitude and Phase Impairment

\[v_{\text{out}}(t) = A_1 |G(j\omega)| \sin \left\{ \omega \left[t + \frac{\theta(\omega)}{\omega} \right] \right\} + \]

\[+ A_2 |G[j(\omega+\Delta\omega)]| \sin \left\{ (\omega+\Delta\omega) \left[t + \frac{\theta(\omega)}{\omega} + \left(\frac{d\theta(\omega)}{d\omega} - \frac{\theta(\omega)}{\omega} \right) \frac{\Delta\omega}{\omega} \right] \right\} \]

- If the second term in the phase of the 2nd sin wave is non-zero, then the filter’s output at frequency \(\omega+\Delta\omega \) is time-shifted differently than the filter’s output at frequency \(\omega \) → “Phase distortion”
- If the second term is zero, then the filter’s output at frequency \(\omega+\Delta\omega \) and the output at frequency \(\omega \) are each delayed in time by \(-\theta(\omega)/\omega \)
- \(\tau_{\text{PD}} = -\theta(\omega)/\omega \) is called the “phase delay” and has units of time
What is Group Delay?
Signal Magnitude and Phase Impairment

- Phase distortion is avoided only if:
 \[
 \frac{d\theta(\omega)}{d\omega} \cdot \frac{\theta(\omega)}{\omega} = 0
 \]

- Clearly, if \(\theta(\omega) = k\omega \), \(k \) a constant, \(\rightarrow \) no phase distortion
- This type of filter phase response is called "linear phase" \(\rightarrow \)Phase shift varies linearly with frequency
- \(\tau_{GR} \equiv -\frac{d\theta(\omega)}{d\omega} \) is called the "group delay" and also has units of time. For a linear phase filter \(\tau_{GR} = \tau_{PD} = k \)
 \(\rightarrow \) \(\tau_{GR} = \tau_{PD} \) implies linear phase
- Note: Filters with \(\theta(\omega) = k\omega + c \) are also called linear phase filters, but they’re not free of phase distortion

What is Group Delay?
Signal Magnitude and Phase Impairment

- If \(\tau_{GR} = \tau_{PD} \rightarrow \) No phase distortion

\[
v_{out}(t) = A_1 |G(j\omega)| \sin \left[\omega \left(t - \tau_{GR} \right) \right] +
\]
\[
+ A_2 |G[j(\omega+\Delta\omega)]| \sin \left[(\omega+\Delta\omega) \left(t - \tau_{GR} \right) \right]
\]

- If also \(|G(j\omega)| = |G[j(\omega+\Delta\omega)]| \) for all input frequencies within the signal-band, \(v_{out} \) is a scaled, time-shifted replica of the input, with no "signal magnitude distortion"
- In most cases neither of these conditions are exactly realizable
Phase delay is defined as:
\[\tau_{PD} \equiv -\frac{\theta(\omega)}{\omega} \quad \text{[time]} \]

Group delay is defined as:
\[\tau_{GR} \equiv -\frac{d\theta(\omega)}{d\omega} \quad \text{[time]} \]

If \(\theta(\omega)=k\omega \), \(k \) a constant, \(\rightarrow \) no phase distortion

For a linear phase filter \(\tau_{GR} \equiv \tau_{PD} = k \)

Summary

Group Delay

Filter Types

Lowpass Butterworth Filter

- Maximally flat amplitude within the filter passband

\[\frac{d^N |H(j\omega)|}{d\omega} \bigg|_{\omega=0} = 0 \]

- Moderate phase distortion

Example: 5th Order Butterworth filter
Lowpass Butterworth Filter

- All poles
- Poles located on the unit circle with equal angles

Example: 5th Order Butterworth Filter

Filter Types

Chebyshev I Lowpass Filter

- Chebyshev I filter
 - Ripple in the passband
 - Sharper transition band compared to Butterworth
 - Poorer group delay
 - As more ripple is allowed in the passband:
 - Sharper transition band
 - Poorer phase response

Example: 5th Order Chebyshev filter
Chebyshev I Lowpass Filter Characteristics

- All poles
- Poles located on an ellipse inside the unit circle
- Allowing more ripple in the passband:
 - Narrower transition band
 - Sharper cut-off
 - Higher pole Q
 - Poorer phase response

Example: 5th Order Chebyshev I Filter

<table>
<thead>
<tr>
<th>Normalized Frequency</th>
<th>Phase (deg)</th>
<th>Magnitude (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>-90</td>
<td>-20</td>
</tr>
<tr>
<td>1</td>
<td>-180</td>
<td>-40</td>
</tr>
<tr>
<td>1.5</td>
<td>-270</td>
<td>-60</td>
</tr>
<tr>
<td>2</td>
<td>-360</td>
<td>-80</td>
</tr>
</tbody>
</table>

Filter Types

Chebyshev II Lowpass

- Chebyshev II filter
 - No ripple in passband
 - Nulls or notches in stopband
 - Sharper transition band compared to Butterworth
 - Passband phase more linear compared to Chebyshev I

Example: 5th Order Chebyshev II filter
Filter Types
Chebyshev II Lowpass

- Both poles & zeros
 - No. of poles n
 - No. of finite zeros $n-1$
- Poles located both inside & outside of the unit circle
- Complex conjugate zeros located on $j\omega$ axis
- Nulls in stopband

Filter Types
Elliptic Lowpass Filter

- Elliptic filter
 - Ripple in passband
 - Nulls in the stopband
 - Sharper transition band compared to Butterworth & both Chebyshevs
 - Poorest phase response
Filter Types
Elliptic Lowpass Filter

- Both poles & zeros
 - No. of poles: n
 - No. of finite zeros: $n-1$
- Zeros located on $j\omega$ axis
- Sharp cut-off
 - Narrower transition band
 - Pole Q higher compared to the previous filters

Example: 5th Order Elliptic Filter

Filter Types
Bessel Lowpass Filter

- Bessel
 - All poles
 - Maximally flat group delay
 - Poor out-of-band attenuation
 - Poles outside unit circle
 - Relatively low Q poles

Example: 5th Order Bessel filter
Magnitude Response of a Bessel Filter as a Function of Filter Order (n)

Filter Types
Comparison of Various Type LPF Magnitude Response

All 5th order filters with same corner freq.
Filter Types
Comparison of Various LPF Singularities

- Poles Bessel
- Poles Butterworth
- Poles Elliptic
- Zeros Elliptic
- Poles Chebyshev I 0.1dB

Comparison of Various LPF Groupdelay

Group Delay Comparison
Example

- Lowpass filter with 100kHz corner frequency
- Chebyshev I versus Bessel
 - Both filters 4th order - same -3dB point
 - Passband ripple of 1dB allowed for Chebyshev I

Magnitude Response
4th Order Chebyshev I versus Bessel
Phase Response
4th Order Chebyshev I versus Bessel

Group Delay
4th Order Chebyshev I versus Bessel
Normalized Group Delay
4th Order Chebyshev I versus Bessel

Step Response
4th Order Chebyshev I versus Bessel
Intersymbol Interference (ISI)

ISI → Broadening of pulses resulting in interference between successive transmitted pulses

Example: Simple RC filter

Pulse Impairment

Bessel versus Chebyshev

Note that in the case of the Chebyshev filter not only the pulse has broadened but it also has a long tail

→ More ISI compared to Bessel
Response to Pseudo-Random Data

Chebyshev versus Bessel

Input Signal:
Symbol rate $1/130k$Hz

<table>
<thead>
<tr>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
<th>1.2</th>
<th>1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.5</td>
<td>-1</td>
<td>-0.5</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Summary

Filter Types

- Filters with high signal attenuation per pole \Rightarrow poor phase response
- For a given signal attenuation, requirement of preserving constant group delay \Rightarrow Higher order filter
 - In the case of passive filters \Rightarrow higher component count
 - For integrated active filters \Rightarrow higher chip area & power dissipation
- In cases where filter is followed by ADC and DSP
 - Possible to digitally correct for phase impairments incurred by the analog circuitry by using digital phase equalizers
RLC Filters

• Bandpass filter:

\[
\frac{V_o}{V_{in}} = \frac{sRC}{s^2 + \omega_0^2 s + \omega_0^2}\]

\[
\omega_0 = \frac{1}{\sqrt{LC}}
\]

\[
Q = \omega_0 R C = \frac{R}{L \omega_0}
\]

Singularities: Pair of complex conjugate poles
Zeros @ \(f=0 \) & \(f=\infty \).

• Design a bandpass filter with:
 - Center frequency of 1kHz
 - Quality factor of 20

• First assume the inductor is ideal
• Next consider the case where the inductor has series \(R \) resulting in a finite inductor \(Q \) of 40
• What is the effect of finite inductor \(Q \) on the overall \(Q \)?
RLC Filters

Effect of Finite Component Q

$$\frac{1}{Q_{\text{filt}}} = \frac{1}{Q_{\text{filt}}^{\text{ideal}}} + \frac{1}{Q_{\text{Ind.}}}$$

![Graph showing the effect of finite component Q on filter response.]

$Q_{\text{filt}} = 20$ (ideal L)

$Q_{\text{filt}} = 13.3$ ($Q_L = 40$)

\Rightarrow Need to have component Q much higher compared to desired filter Q

RLC Filters

Question:
Can RLC filters be integrated on-chip?
Monolithic Inductors
Feasible Quality Factor & Value

Feasible monolithic inductor in CMOS tech. <10nH with Q < 7

Ref: “Radio Frequency Filters”, Lawrence Larson; Mead workshop presentation 1999

Monolithic LC Filters

- Monolithic inductor in CMOS tech.
 - L < 10nH with Q < 7

- Max. capacitor size (based on realistic chip area)
 - C < 20pF

LC filters in the monolithic form feasible:
- Frequency > 350MHz
- Only low quality factor filters

Learn more in EE242
Integrated Filters

- Implementation of RLC filters in CMOS technologies requires on-chip inductors
 - Integrated L<10nH with Q<10
 - Combined with max. cap. 20pF
→ LC filters in the monolithic form feasible: freq>350MHz

- Analog/Digital interface circuitry require fully integrated filters with critical frequencies << 350MHz

- Hence:

 ⇒ Need to build active filters built without inductor

Filters

2nd Order Transfer Functions (Biquads)

- Biquadratic (2nd order) transfer function:

\[
H(s) = \frac{1}{1 + \frac{s}{\omega_p Q_p} + \frac{s^2}{\omega_p^2}}
\]

\[
|H(j\omega)| = \frac{1}{\sqrt{1 - \frac{\omega^2}{\omega_p^2} + \left(\frac{\omega}{\omega_p Q_p}\right)^2}}
\]

\[
Biquad poles @: s = -\frac{\omega_p}{2Q_p} \left(1 \pm i\sqrt{1 - 4Q_p^2}\right)
\]

Note: for \(Q_p \leq \frac{1}{2}\) poles are real, complex otherwise
Biquad Complex Poles

\[Q_P > \frac{1}{2} \quad \rightarrow \quad \text{Complex conjugate poles:} \]

\[s = -\frac{\omega_P}{2Q_P} \left(1 \pm j\sqrt{4Q_P^2 - 1} \right) \]

Distance from origin in s-plane:

\[d^2 = \frac{\left(\frac{\omega_P}{2Q_P} \right)^2}{1 + 4Q_P^2 - 1} = \omega_P^2 \]

\[s = -\frac{\omega_P}{2Q_P} \left(1 \pm j\sqrt{4Q_P^2 - 1} \right) \]
Implementation of Biquads

- Passive RC: only real poles → can’t implement complex conjugate poles
- Terminated LC
 - Low power, since it is passive
 - Only fundamental noise sources → load and source resistance
 - As previously analyzed, not feasible in the monolithic form for \(f < 250\text{MHz} \)
- Active Biquads
 - Many topologies can be found in filter textbooks!
 - Widely used topologies:
 - Single-opamp biquad: Sallen-Key
 - Multi-opamp biquad: Tow-Thomas
 - Integrator based biquads

Active Biquad

Sallen-Key Low-Pass Filter

\[
H(s) = \frac{G}{1 + \frac{s}{\omega_p Q_p} + \frac{s^2}{\omega_p^2}}
\]

\[
\omega_p = \frac{1}{\sqrt{R_1 C_1 R_2 C_2}}
\]

\[
Q_p = \frac{\omega_p}{\frac{1}{R_0 C_1} + \frac{1}{R_2 C_2} + \frac{1-G}{R_0 C_2}}
\]

- Single gain element
- Can be implemented both in discrete & monolithic form
- “Parasitic sensitive”
- Versions for LPF, HPF, BP, ...
 - Advantage: Only one opamp used
 - Disadvantage: Sensitive to parasitic – all pole no zeros
Addition of Imaginary Axis Zeros

- Sharpen transition band
- Can "notch out" interference
- High-pass filter (HPF)
- Band-reject filter

\[H(s) = K \left(1 + \frac{s^2}{\omega_Z} \right)^2 \]

\[H(j\omega) \big|_{\omega \rightarrow \infty} = K \left(\frac{\omega_p}{\omega_Z} \right)^2 \]

Note: Always represent transfer functions as a product of a gain term, poles, and zeros (pairs if complex). Then all coefficients have a physical meaning, and readily identifiable units.

Imaginary Zeros

- Zeros substantially sharpen transition band
- At the expense of reduced stop-band attenuation at high frequency

\[f_p = 100kHz \]
\[Q_z = 2 \]
\[f_z = 3f_p \]
Moving the Zeros

\[f_p = 100kHz \]
\[Q_p = 2 \]
\[f_z = f_p \]

Frequency Response

\[
\frac{V_{o1}}{V_{in}} = -k_2 \frac{(b_2a_1 - b_1)s + (b_2a_0 - b_0)}{s^2 + a_1s + a_0}
\]

\[
\frac{V_{o2}}{V_{in}} = \frac{b_2s^2 + b_1s + b_0}{s^2 + a_1s + a_0}
\]

\[
\frac{V_{o3}}{V_{in}} = -\frac{1}{k_1\sqrt{a_0}} \frac{(b_0 - b_2a_0)s + (a_1b_0 - a_0b_1)}{s^2 + a_1s + a_0}
\]

- \(V_{o2} \) implements a general biquad section with arbitrary poles and zeros
- \(V_{o1} \) and \(V_{o3} \) realize the same poles but are limited to at most one finite zero

Component Values

\[
b_0 = \frac{R_k}{R_R R_R C_1 C_2}
\]

\[
b_1 = \frac{1}{R_R C_1} \left(\frac{R_k}{R_k R_k R_R C_2} \right)
\]

\[
b_2 = \frac{R_k}{R_k R_k R_R C_1 C_2}
\]

\[
a_k = \frac{1}{R_R R_R C_1 C_2}
\]

\[
a_1 = \frac{1}{R_R C_1}
\]

\[
k_1 = \sqrt{\frac{R_R R_R C_1}{R_R R_R C_2}}
\]

\[
k_2 = \frac{R_k}{R_k R_k}
\]

given \(a_1, b_1, k_1, C_1, C_2 \) and \(R_k \)

\[
R_1 = \frac{1}{a_1 C_1}
\]

\[
R_2 = -\frac{k_1}{\sqrt{a_1 C_1}}
\]

\[
R_3 = \frac{1}{k_1 k_2 \sqrt{a_1 C_1}}
\]

\[
R_4 = \frac{1}{k_1 a_1 b_1 - b_1 C_1}
\]

\[
R_5 = \frac{k_1 \sqrt{a_1}}{b_1 C_1}
\]

\[
R_6 = \frac{R_k}{R_k}
\]

\[
R_s = k_2 R_k
\]

\[
R_s = k_2 R_k
\]

it follows that

\[
\omega_r = \frac{R_k}{\sqrt{R_s R_s R_R R_R C_1 C_2}}
\]

\[
Q_r = \omega_r R_k C_1
\]