EE247
Lecture 12

• Data Converters
 – Data converter testing (continued)
 • Measuring DNL & INL
 – Servo-loop
 – Code density testing (histogram testing)
 • Dynamic tests
 – Spectral testing → Reveals ADC errors associated with
dynamic behavior i.e. ADC performance as a function of
frequency
 • Direct Discrete Fourier Transform (DFT) based
measurements utilizing sinusoidal signals
 • DFT measurements including windowing
 • Relationship between: DNL & SNR, INL & SFDR
 • Effective number of bits (ENOB)

Summary
ADC Differential Nonlinearity & Integral Nonlinearity
End-Point

1. Endpoints connected
2. Ideal characteristics derived eliminating
 offset & full-scale error
 (same as for DNL)
3. DNL → deviation of
 code width from \(\Delta\)
 (1LSB)
4. INL → deviation of code
 transition from ideal
How to measure DNL/INL?

- **DAC:**
 - Simply apply digital codes and use a good voltmeter to measure corresponding analog output

- **ADC**
 - Not as simple as DAC → need to find "decision levels", i.e. input voltages at all code boundaries
 - One way: Adjust voltage source to find exact code trip points "code boundary servo"
 - More versatile: Histogram testing
 → Apply a signal with known amplitude distribution and analyze digital code distribution at ADC output

Code Boundary Servo

![Code Boundary Servo Diagram](image-url)
Code Boundary Servo

- i1 and i2 are small, and C1 is large ($\Delta V = i1/C1$), so the ADC analog input moves a small fraction of an LSB (e.g. 0.1 LSB) each sampling period.

- For a code input of 101, the ADC analog input settles to the code boundary shown.

Code Boundary Servo

- Input Digital Code
- i_1 and i_2 are small, and C_1 is large ($\Delta V = i1/C1$), so the ADC analog input moves a small fraction of an LSB (e.g. 0.1 LSB) each sampling period.
- For a code input of 101, the ADC analog input settles to the code boundary shown.

- Good DVM
- V_{REF}, f_S
Code Boundary Servo

• A very good digital voltmeter (DVM) measures the analog input voltage corresponding to the desired code boundary
• DVMs have some interesting properties
 – They can have very high resolutions (8½ decimal digit meters are inexpensive)
 – To achieve stable readings, DVMs average voltage measurements over multiple 60Hz ac line cycles to filter out pickup in the measurement loop

Code Boundary Servo

• ADCs of all kinds are notorious for kicking back high-frequency, signal-dependent glitches to their analog inputs

• A magnified view of an analog input glitch follows …
Code Boundary Servo

• Just before the input is sampled and conversion starts, the analog input is pretty quiet.

• As the converter begins to quantize the signal, it kicks back charge.

Code Boundary Servo

• The difference between what the ADC measures and what the DVM measures is not ADC INL, it’s error in the INL measurement.

• How do we control this error?
Code Boundary Servo

- A large C_2 reduces the effect of kick-back
- At the expense of longer measurement time

![Diagram of Code Boundary Servo](image)

Good DVM

Histogram Testing

- Code boundary measurements are slow
 - Long testing time
- Histogram testing
 - Apply input with known pdf (e.g. ramp or sinusoid) & quantize
 - Measure output pdf
 - Derive INL and DNL from deviation of measured pdf from expected result
Histogram Test Setup

- Slow (wrt conversion time) linear ramp applied to ADC
- DNL derived directly from total number of occurrences of each code @ the output of the ADC

A/D Histogram Test Using Ramp Signal

Example:

ADC sampling rate:
\[f_s = 100\text{kHz} \Rightarrow T_s = 10\mu\text{sec} \]

1LSB = 10mV
For 0.01LSB measurement resolution:
\[n = 100 \text{ samples/code} \]

→ Ramp duration per code:
= 100x10\mu\text{sec} = 1\text{msec}

→ Ramp slope: 10mV/msec
A/D Histogram Test Using Ramp Signal

Example:

Ramp slope: 10mV/msec
1 LSB = 10mV
Each ADC code → 1msec

\[f_s = 100\text{kHz} \Rightarrow T_s = 10\text{μsec} \]

\[\Rightarrow n = 100 \text{ samples/code} \]

Ramp Histogram
Example: Ideal 3-Bit ADC
Ramp Histogram
Example: Real 3-Bit ADC Including Non-Idealities

Example: 3 Bit ADC
DNL Extracted from Histogram

1- Remove “Over-range bins” (0 and full-scale)
2- Compute average count/bin (600/6=100 in this case)
Example: 3 Bit ADC
Process of Extracting from Histogram

3- Normalize:

- Divide histogram by average count/bin

→ ideal bins have exactly the average count, which, after normalization, would be 1

→ Non-ideal bins would have a normalized value greater or smaller than 1

Example: 3 Bit ADC
DNL Extracted from Histogram

4- Subtract I from the normalized code count

5- Result → DNL (±0.4LSB in this case)
Example: 3-Bit ADC
Static Characteristics Extracted from Histogram

- DNL histogram used to reconstruct the exact converter characteristic (having measured only the histogram)
- Width of all codes derived from measured DNL (Code=DNL + 1LSB)
- INL (deviation from a straight line through the end points) is found

Example: 3-Bit ADC
DNL & INL Extracted from Histogram

- ADC characteristics
- Ideal converter
Measuring DNL

- Ramp speed is adjusted to provide large number of output/code - e.g. an average of 100 outputs of each ADC code (for 1/100 LSB resolution)

- Ramp test can be quite slow for high resolution ADCs
- Example:
 16bit ADC & 100 conversions/code @100kHz sampling rate

\[
\frac{(2^{16} \text{or } 65,536 \text{ codes})(100 \text{ conversions/code})}{100,000 \text{ conversions/sec}} = 65.6 \text{ sec}
\]

ADC Histogram Testing
Sinusoidal Inputs

- Ramp signal generators linear to only 8 to 10 bits & thus only good for testing ADCs < 10 bit res.
 - Need to find input signal with better purity for testing higher res. ADCs

- Solution:
 - Use sinusoidal test signal (may need to filter out harmonics)

- Problem: Ideal ADC histogram not flat but has “bath-tub shape”
ADC Histogram Test Using Sinusoidal Signals

At sinusoid midpoint crossings:
\(\frac{dv}{dt} \to \text{max.} \)
\(\to \) least # of samples

At sinusoid amplitude peaks:
\(\frac{dv}{dt} \to \text{min.} \)
\(\to \) highest # of samples

Histogram Testing Correction for Sinusoidal PDF

- Is it necessary to know the exact amplitude and offset of sinusoidal input? No!

- References:
function [dnl,inl] = dnl_inl_sin(y);
% DNL_INL_SIN
% dnl and inl ADC output
% input y contains the ADC output
% vector obtained from quantizing a
% sinusoid
% Boris Murmann, Aug 2002
% Bernhard Boser, Sept 2002
% histogram boundaries
minbin=min(y);
maxbin=max(y);
% histogram
h = hist(y, minbin:maxbin);
% cumulative histogram
ch = cumsum(h);
% transition levels found by:
T = -cos(pi*ch/sum(h));
% linearized histogram
hlin = T(2:end) - T(1:end-1);
% truncate at least first and last
bin, more if input did not clip ADC
trunc=2;
hlin_trunc = hlin(1+trunc:end-trunc);
% calculate lsb size and dnl
lsb= sum(hlin_trunc) / (length(hlin_trunc));
dnl= [0 hlin_trunc/lsb-1];
misscodes = length(find(dnl<-0.99));
% calculate inl
inl= cumsum(dnl);

Example: Test Results for DNL & INL
Using Sinusoidal Histogram

DNL = +1.3 / -1 LSB, missing code if (DNL<-0.99)

INL = +1.7 / -0.69 LSB
Example: Matlab ADC Model
DNL/INL Code Test

% converter model
B = 6;
range = 2^(B-1) - 1;
% thresholds (ideal converter)
th = -range:range; % ideal thresholds
th(20) = th(20)+0.7; % error

fs = 1e6;
fx = 494e3 + pi; % try fs/10!
C = round(100 * 2^B / (fs / fx));
t = 0:t/fs:C/fx;
x = (range+1) * sin(2*pi*fx.*t);
y = adc(x, th);
hist(y, min(y):max(y));
dnl_inl_sin(y);

Histogram Testing Limitations

• The histogram (as any ADC test, of course) characterizes one particular converter. Test many devices to get valid statistics.

• Histogram testing assumes monotonicity
 E.g. "code flips" will not be detected.

• Dynamic sparkle codes produce only minor DNL/INL errors
 E.g. 123, 123, ..., 123, 0, 124, 124, ..., → look at ADC output to detect

• Noise not detected & averaged out
 E.g. 9, 9, 9, 10, 9, 9, 9, 10, 9, 10, 10, 10, ...

Why Additional Tests/Metrics?

• Static testing does not tell the full story
 – E.g. no info about "noise" or high frequency effects
• Frequency dependence (f_s and f_{in}) ?
 – In principle we can vary f_s and f_{in} when performing histogram tests
 – Result of such sweeps is usually not very useful
 – Hard to separate error sources, ambiguity
 – Typically we use $f_s=f_{sNOM}$ and $f_{in} << f_s/2$ for histogram tests
• For additional info regarding higher frequency operation → Spectral testing

DAC Spectral Test or Simulation

• Input sinusoid → Need to have significantly better purity compared to DAC linearity
• Spectrum analyzer need to have better linearity than DUT
• Typically, test performed at several different input signal frequencies
Filtering Input to Spectrum Analyzer

Prevent Signal Distortion Incurred by Spec. Analyzer

1. Measure fundamental signal level
2. Notch out fundamental signal so that Spec. Analyzer input signal becomes small enough not to drive S.A. input into non-linear region
3. Measure the harmonic content of the DAC output

Direct ADC Spectral Test via DAC

Device Under Test (DUT)

- Need DAC with much better performance compared to ADC under test
- Beware of DAC output \(\sin x/x \) frequency shaping
- Good way to "get started"...
Direct ADC-DAC Test

- Issues to beware of:
 - Linearity of the signal generator output has to be much better than ADC linearity
 - Spectrum analyzer nonlinearities
 → May need to build/purchase filters to address one or both above problems
 - Clock generator signal jitter

Filtering ADC Input Signal
ADC Spectral Test via Data Acquisition System

- Device Under Test (DUT)
- Signal Generator
 - V_{in}
 - ADC
 - Data Acquisition System
 - PC
- Clock Generator

Analyzing ADC Outputs via Discrete Fourier Transform (DFT)

- Sinusoidal waveform has all its power at one single frequency
- An ideal, infinite resolution ADC would preserve ideal, single tone spectrum
- DFT used as a vehicle to reveal ADC deviations from ideality
Discrete Fourier Transform (DFT) Properties

• DFT of N samples spaced \(T_s = 1/f_s \) seconds:
 – \(N \) frequency bins from DC to \(f_s \)
 – Num of bins \(\rightarrow N \) & each bin has width \(f_s/N \)
 – Bin # \(m \) represents frequencies at \(m * f_s/N \) [Hz]

• DFT frequency resolution:
 – Proportional to \(f_s/N \) in [Hz/bin]

• DFT with \(N = 2^k \) (\(k \) is an integer) can be found using a computationally more efficient algorithm named:
 – FFT \(\rightarrow \) Fast Fourier Transform

DFT Magnitude Plots

• Because magnitudes of DFT bins \((A_m) \) are symmetric around \(f_s/2 \), it is redundant to plot \(|A_m| \)'s for \(m > N/2 \)

• Usually magnitudes are plotted on a log scale normalized so that a full scale sinusoidal waveform with \(rms \) value \(a_{FS} \) yields a peak bin of 0dBFS:

\[
|A_m| \ [dBFS] = 20 \log_{10} \left(\frac{|A_m|}{a_{FS} \cdot N/2} \right)
\]
Matlab Example
Normalized DFT

```matlab
fs = 1e6;
fx = 50e3;
Afs = 1;
N = 100;

% time vector
t = linspace(0, (N-1)/fs, N);
% input signal
y = Afs * cos(2*pi*fx*t);
% spectrum
s = 20 * log10(abs(dft(y)/N/Afs*2));
% drop redundant half
s = s(1:N/2);
% frequency vector (normalized to fs)
f = (0:length(s)-1) / N;
```

Note: Where does the -300dBFS noise floor come from?

“Another” Example …

Even though the input signal is a pure sinusoidal waveform note that the DFT results does not look like the spectrum of a sinusoid …

Seems that the signal is distributed among several bins
DFT Periodicity

- The DFT implicitly assumes that time sample blocks repeat every \(N \) samples.
- With a non-integer number of signal periods within the observation window, the input yields significant amplitude/phase discontinuity at the block boundary.
- This energy spreads into other frequency bins as "spectral leakage".
- Spectral leakage can be eliminated by either:
 1. Choice of integer number of sinusoids in each block.
 2. Windowing.

Frequency Spectrum

Integer # of Cycles versus Non-Integer # of Cycles
Choice of Number of Cycles & Number of Samples

To overcome frequency spectrum leakage problem:

- Number of Cycles \(\rightarrow \) integer

- \(\frac{N}{\text{cycles}} = f_s / f_x \) \(\rightarrow \) non-integer (choose prime # of cycles) otherwise quant. noise \(\rightarrow \) periodic and non-random

- Preferable to have \(N: \) \(\rightarrow \) power of 2 (FFT instead of DFT)

Example: Integer Number of Cycles

\[
fs = 1e6; \\
\% Number of cycles in test \\
cycles = 67; \\
\%Make N/cycles non-integer! accomplished by choosing cycles\rightarrow prime # \\
N = 2^10; \\
%signal frequency \\
f_x = fs*cycles/N \\
y = Afs \cdot \cos(2\pi f_x t); \\
s = 20 * \log10(abs(fft(y)/N/Afs*2));
\]

Notice: Range of test signals limited to \(\left[\frac{cycles \cdot f_x}{N} \right] \)
Example: Integer Number of Cycles

- Fundamental falls into a single DFT bin
- Noise (this example numerical quantization noise) occupies all other bins
- "integer number of cycles" constrains signal frequency f_x
- Alternative: windowing

Windowing

- Spectral leakage can be attenuated by “windowing” time samples prior to the DFT
 - Windows taper smoothly down to zero at the beginning and the end of the observation window
 - Time samples are multiplied by window coefficients on a sample-by-sample basis
 - Convolution in frequency domain
- Large number choices of various windows
 - Tradeoff: attenuation versus fundamental signal spreading to number of adjacent bins
- Window examples: Nuttall versus Hann
Example: Nuttall Window

- Time samples are multiplied by window coefficients on a sample-by-sample basis
- Multiplication in the time domain → convolution in the frequency domain

Windowed Data

- Signal before windowing

- Time samples are multiplied by window coefficients on a sample-by-sample basis

 - Windowing removes the discontinuity at block boundaries
Nuttall Window DFT

- Only first 20 bins shown
- Response attenuated by -120dB for bins > 5
- Lots of windows to choose from (go by name of inventor - Blackman, Harris, Nutall...)
- Various window trade-off attenuation versus width (smearing of sinusoids)

DFT of Windowed Signal
Spectrum Before/After Windowing

- Windowing results in ~ 100dB attenuation of sidelobes
- Signal energy “smeared” over several (approximately 10) bins
Window
Nuttall versus Hann

Matlab code:
N=64;
wvtool(nuttallwin(N),hann(N));

Integer Cycles versus Windowing

- Integer number of cycles
 - Signal energy for a single sinusoid falls into single DFT bin
 - Requires careful choice of \(f_x \)
 - Ideal for simulations
 - Measurements → need to lock \(f_x \) to \(f_s \) (PLL) - not always possible

- Windowing
 - No restrictions on \(f_x \) → no need to have the signal locked to \(f_x \)
 - Good for measurements w/o having the capability to lock \(f_x \) to \(f_s \) or cases where input is not periodic
 - Signal energy and its harmonics distributed over several DFT bins – handle smeared-out harmonics with care!
 - Requires more samples for a given accuracy
 - Note that no windowing is equal to windowing with a rectangular window!
Example: ADC Spectral Testing

- ADC with B bits
- Full scale input level=2

 $B = 10$;
 $\delta = \frac{2}{2^B}$;
 sampled sinusoid
 $y = \cos(2\pi f_x/f_s[0:N-1])$;
 quantize samples to $\delta=1$ LSB
 $y=\text{round}(y/\delta)\times\delta$;
 $s = \text{abs}(\text{fft}(y)/N*2)$;
 $f = (0:\text{length}(s)-1) / N$;

ADC Output Spectrum

- Input signal bin:
 - $Bx @ \text{bin # } (N \times f_x/f_s + 1)$
 (Matlab arrays start at 1)
 - $A_{\text{signal}} = 0$dBFS

- What is the SNR?
Simulated ADC Output Spectrum

- Noise bins: all except signal bin
 \[bx = N \times f_x / f_s + 1; \]
 \[As = 20 \times \log_{10}(s(bx)) \]
 \%set signal bin to 0
 \[s(bx) = 0; \]
 \[An = 10 \times \log_{10}(\sum(s.^2)) \]
 \[SNR = As - An \]

- Matlab \(\rightarrow \) SNR = 62dB (10 bits)
- Computed SQNR = 6.02xN+1.76dB=61.96dB

Note: In a real circuit including thermal/flicker noise \(\rightarrow \) the measured total noise is the sum of quantization & noise associated with the circuit

Why is Noise Floor Not @ -62dB ?

- DFT bins act like an analog spectrum analyzer with bandwidth per bin of \(f_s / N \)
- Assuming noise is uniformly distributed, noise per bin:
 \[(Total\ noise)/N/2 \]
 \(\rightarrow \) The DFT noise floor wrt total noise:
 \[-10\log_{10}(N/2) \text{ [dB]} \]
 below the actual noise floor
- For \(N=2048 \):
 \[-10\log_{10}(N/2) = 30 \text{ [dB]} \]
DFT Plot Annotation

• Need to annotate DFT plot such that actual noise floor can be readily computed by one of these 3 ways:
 1. Specify how many DFT points (N) are used
 2. Shift DFT noise floor by $10\log_{10}(N/2)$ [dB]
 3. Normalize to "noise power in 1Hz bandwidth“ then noise is in the form of power spectral density

Example: 10Bit ADC FFT

• For a real 10bit ADC spectral test results:
 • SNR=55.9dB
 • A 3rd harmonic is barely visible
 • Is better view of distortion component possible?

N = 4096
SNR = 55.9dB
SDR = 76.4dB
SNDR = 55.1dB
SFDR = 77.3dB
Example: 10Bit ADC FFT

- Increasing N, the number of samples (and hence the measurement or simulation time) distributes the noise over larger # of bins
- Larger # of bins \Rightarrow less noise power per bin (total noise stays constant)
- Note the 3rd harmonic is clearly visible when N is increased

![FFT Graph](image)

N = 65536
SNR = 55.9dB
SDR = 77.9dB
SNDR = 55.2dB
SFDR = 78.5dB

Spectral Performance Metrics
ADC Including Non-Idealities

- Signal S
- DC
- Distortion D
- Noise N

- Ideal ADC adds:
 - Quantization noise
- Real ADC typically adds:
 - Thermal and flicker noise
 - Harmonic distortion associated with circuit nonlinearities
ADC Spectral Performance Metrics

SNR

- Signal S
- DC
- Distortion D
- Noise N

- Signal-to-noise ratio
 \[\text{SNR} = 10 \log \left(\frac{\text{Signal Power}}{\text{Noise Power}} \right) \]

- In Matlab: Noise power includes power associated with all bins except:
 - DC
 - Signal
 - Signal harmonics

SDR & SNDR & SFDR

- SDR \rightarrow \text{Signal-to-distortion ratio}
 \[= 10 \log \left(\frac{\text{Signal Power}}{\text{Total Distortion Power}} \right) \]

- SNDR \rightarrow \text{Signal-to-(noise+distortion)}
 \[= 10 \log \left(\frac{\text{Signal}}{\text{N+D}} \right) \]

- SFDR \rightarrow \text{Spurious-free dynamic range}
 \[= 10 \log \left(\frac{\text{Signal}}{\text{Largest Harmonic}} \right) \]

 \rightarrow \text{Typically SFDR} > \text{SDR}
Harmonic Components

- At multiples of f_x
- Aliasing:
 - $f_{\text{signal}} = f_x = 0.18 \, f_s$
 - $f_2 = 2 \, f_0 = 0.36 \, f_s$
 - $f_3 = 3 \, f_0 = 0.54 \, f_s \rightarrow 0.46 \, f_s$
 - $f_4 = 4 \, f_0 = 0.72 \, f_s \rightarrow 0.28 \, f_s$
 - $f_5 = 5 \, f_0 = 0.90 \, f_s \rightarrow 0.10 \, f_s$
 - $f_6 = 6 \, f_0 = 1.08 \, f_s \rightarrow 0.08 \, f_s$

Relationship INL & SFDR/SNDR

- Quadratic shaped transfer function:
 - Gives rise to even order harmonics
- Cubic shaped transfer function:
 - Gives rise to odd order harmonics
Frequency Spectrum versus INL & DNL

Good DNL and poor INL suggests distortion

INL not fully symmetric

Relationship INL & SFDR/SNDR

- Nature of harmonics depend on "shape" of INL curve

- Rule of Thumb: $\text{SFDR} \approx 20\log(2^B/\text{INL})$
 - E.g. 1LSB INL, 10b → SFDR≥60dB

- Beware, this is of course only true under the same conditions at which the INL was taken, i.e. typically low input signal frequency
SNR Degradation due to DNL

- Uniform quantization error pdf was assumed for ideal quantizer over the range of: +/- Δ/2
- Let's now add uniform DNL over +/- Δ/2 and repeat math...
 - Joint pdf for two uniform pdfs \(\rightarrow \) Triangular shape

\[
\bar{e}^2 = 2 \int_0^{\Delta} (1 - e) \frac{e^2}{\Delta} \, de = \frac{\Delta^2}{6} \quad \Rightarrow \text{SNR} = 6.02 \cdot N - 1.25 \, \text{[dB]}
\]

- Compare to ideal quantizer:

\[
\bar{e}^2 = \int_{-\Delta/2}^{+\Delta/2} e^2 \, de = \frac{\Delta^2}{12} \quad \Rightarrow \text{SNR} = 6.02 \cdot N + 1.76 \, \text{[dB]}
\]

\(\rightarrow \) Error associated with DNL reduces overall SNR

[Source: Ion Opirs]
SNR Degradation due to DNL

- More general case:
 - Uniform quantization error (ideal) ±0.5Δ
 - Uniform DNL error ± DNL [LSB]
 - Convolution yields trapezoid shaped joint pdf
 - SQNR becomes:

\[
SQNR = \frac{1}{2} \left(\frac{2^N \Delta}{2} \right)^2 \frac{\Delta^2}{12 + \frac{DNL^2}{3}}
\]

SNR Degradation due to DNL

- Degradation in dB:

\[
SQNR_{\text{deg}} = 1.76 - 10 \log \left[\frac{1}{\frac{8}{12 + \frac{DNL^2}{3}}} \right]
\]

Valid only for cases where no missing codes
Summary
INL & SFDR - DNL & SNR

INL & SFDR
- Type of distortion depends on "shape" of INL
- Rule of Thumb:
 \[SFDR \approx 20 \log(2^b/\text{INL}) \]
 - E.g. 1LSB INL, 10b \(\rightarrow \) SFDR\(\approx \)60dB

DNL & SNR
Assumptions:
- DNL pdf \(\rightarrow \) uniform
- No missing codes

\[SQNR = \frac{\left(\frac{2}{2N} \right)^2}{\Delta^2 + \frac{DNL^2}{3}} \]

Uniform DNL?
- DNL distribution of 12-bit ADC test chip
- Not quite uniform...
Effective Number of Bits (ENOB)

• Is a 12-Bit converter with 68dB SNDR really a 12-Bit converter?

• Effective Number of Bits \((ENOB)\) \(\rightarrow\) # of bit of an ideal ADC with the same SQNR as the SNDR of the non-ideal ADC

\[
ENOB = \frac{SNDR - 1.76\text{dB}}{6.02\text{dB}}
\]

\[
= \frac{68 - 1.76}{6.02} = 11.0\text{Bits}
\]

\(\rightarrow\) Above ADC is a 12bit ADC with ENOB=11bits

ENOB

• At best, we get "ideal" ENOB only for negligible thermal noise, DNL, INL

• Low noise design is costly \(\rightarrow\) 4x penalty in power per (ENOB-) bit or 6dB extra SNDR

• Rule of thumb for good performance /power tradeoff: ENOB < N-1
R. H. Walden, "Analog-to-digital converter survey and analysis," *IEEE J. on Selected Areas in Communications*, pp. 539-50, April 1999