EECS 247 Lecture 18

ADC Converters
- Track & hold
 • T/H circuits
 • T/H combined with summing/difference function
 • T/H circuit incorporating gain & offset cancellation
 • T/H aperture uncertainty
- ADC architectures and design
 • Serial- slope type
 • Successive approximation
 • Flash ADC and its sources of error: comparator offset, sparkle code & meta-stability
- Comparator design
 • Single-stage open-loop amplifier
 • Cascade of open-loop amplifiers

Summary of Last Lecture

ADC Converters
- Sampling (continued)
 • Sampling switch considerations
 - Clock voltage boosters
 • Sampling switch charge injection & clock feedthrough
 - Complementary switch
 - Use of dummy device
 - Bottom-plate switching
- Track & hold
 • Flip around T/H
Flip-Around T/H-Basic Operation

$\phi_1 \to \text{high}$

ϕ_1 and ϕ_2 are control signals. ϕ_1 is the clock signal, and ϕ_2 is the hold signal.

V_{IN} is the input voltage, V_{OUT} is the output voltage, C is the capacitor, and V_{CM} is the common-mode voltage.

1. **Charging C:**
 - ϕ_1 is high, and ϕ_2 is low.
 - S1 is closed, allowing V_{IN} to charge C.
 - The opamp is in the non-inverting mode.
 - The charge is given by $Q_{\phi_1} = V_{IN} \times C$.
 - Note: Opamp must be stable in unity-gain configuration.

2. **Holding:**
 - ϕ_1 is low, and ϕ_2 is high.
 - S1 is open, and S2 and S3 are closed, holding the voltage.
 - $V_{OUT} = V_{IN}$.

Flip-Around T/H-Basic Operation

$\phi_2 \to \text{high}$

ϕ_1 and ϕ_2 are control signals. ϕ_1 is the clock signal, and ϕ_2 is the hold signal.

V_{IN} is the input voltage, V_{OUT} is the output voltage, C is the capacitor, and V_{CM} is the common-mode voltage.

1. **Holding:**
 - ϕ_1 is low, and ϕ_2 is high.
 - S1 is open, and S2 and S3 are closed, holding the voltage.
 - $V_{OUT} = V_{IN}$.

2. **Charging C:**
 - ϕ_1 is high, and ϕ_2 is low.
 - S1 is closed, allowing V_{IN} to charge C.
 - The opamp is in the non-inverting mode.
 - The charge is given by $Q_{\phi_2} = V_{OUT} \times C$.

Note: The opamp must be stable in unity-gain configuration.
Offset voltage associated with charge injection of S11 & S12 cancelled by differential nature of the circuit

- Gain = 1
- Issue: Large input common-mode compliance required
Differential Flip-Around T/H
Issues: Large Input Common-Mode Compliance

\[V_{CM_{Vin}} = V_{out_com} \cdot V_{sig_com} \]

\[\Delta V_{in_cm} = V_{out_com} - V_{sig_com} \]

→ Drawback: Amplifier needs to have large input common-mode compliance

Input Common-Mode Cancellation

\[V_{12} \]

\[V_{11} \]

\[V_{C1} \]

\[V_{C2} \]

\[V_{O1} \]

\[V_{O2} \]

• Note: Shorting switch M3 added

Input Common-Mode Cancellation

- **Track mode** (ϕ high)
 - $V_{C1} = V_{I1}$
 - $V_{C2} = V_{I2}$
 - $V_{o1} = V_{o2} = 0$

- **Hold mode** (ϕ low)
 - $V_{o1} + V_{o2} = 0$
 - $V_{o1} - V_{o2} = -(V_{I1} - V_{I2})(C_1/(C_1 + C_3))$

→ Input common-mode level removed
* Will introduce active version in page 18

Switched-Capacitor Techniques Combining Track & Hold with Various other Functions

- T/H + Charge redistribution amplifier
- T/H & Input difference amplifier
- T/H & summing amplifier
- Differential T/H combined with gain stage
- Differential T/H including offset cancellation
T/H + Charge Redistribution Amplifier

Track mode: \((S1, S3 \rightarrow \text{on} S2 \rightarrow \text{off})\)
- \(V_{C1} = V_{os} - V_{IN}\)
- \(V_C = 0\)
- \(V_o = V_{os}\)

Hold Mode
- Offset NOT cancelled, but not amplified
- Input-referred offset = \((C_2/C_1) \times V_{OS}\), & often \(C_2 < C_1\)
- Can incorporate gain by having \(C_1 > C_2\)
T/H & Input Difference Amplifier

Sample mode:
(S1, S3 \rightarrow on S2 \rightarrow off)
$V_{C1} = V_{os} - V_{1I}$, $V_{C2} = 0$
$V_o = V_{os}$

T/H & Input Difference Amplifier

Cont'd

Subtract/Amplify mode (S1, S3 \rightarrow off S2 \rightarrow on)

During previous phase:
$V_{C1} = V_{os} - V_{1I}$, $V_{C2} = 0$
$V_o = V_{os}$

$V_{C1} = V_{os} - V_{I2}$
$\Delta V_{C1} = (V_{os} - V_{I2}) - (V_{os} - V_{I1}) = V_{I1} - V_{I2}$

$\Delta V_{C2} = \left(\frac{C_1}{C_2}\right)\Delta V_{C1} = \left(\frac{C_1}{C_2}\right)(V_{I1} - V_{I2})$

$V_o = \frac{C_1}{C_2}(V_{I1} - V_{I2}) + V_{os}$

\rightarrow Offset NOT cancelled, but not amplified
\rightarrow Input-referred offset = $(C_2/C_1)xV_{os}$, $C_2 < C_1$
Sample mode (S1, S3, S5 → on S2, S4 → off)

\[V_{C1} = V_{os} - V_{I1}, \quad V_{C2} = V_{os} - V_{I3}, \quad V_{C3} = 0 \]

\[V_o = V_{os} \]
T/H & Summing Amplifier Cont’d

Amplify mode (S1, S3, S5→off, S2, S4→on)

\[V_{C1} = V_{IN} - V_{I2} = \Delta V_{C1} = V_{I1} - V_{I2} \]
\[V_{C2} = V_{IN} - V_{I4} = \Delta V_{C2} = V_{I3} - V_{I4} \]
\[\Delta Q_3 = \Delta Q_1 + \Delta Q_2 = C_{10}V_{C1} + C_{20}V_{C2} \]
\[\Delta V_{C3} = \frac{\Delta Q_3}{C_3} = (\frac{C_1}{C_2})(V_{I1} - V_{I2}) + (\frac{C_2}{C_3})(V_{I3} - V_{I4}) \]
\[V_O = \left(\frac{C_1}{C_2}(V_{I1} - V_{I2}) + \frac{C_2}{C_3}(V_{I3} - V_{I4}) + V_{IN} \right) \]

Differential T/H Combined with Gain Stage

Employs the previously discussed technique to eliminate the problem associated with high common-mode voltage excursion at the input of the opamp.

Differential T/H Combined with Gain Stage

$\phi_1 \rightarrow \text{High}$

- Gain $= 4C/C = 4$
- Input voltage common-mode level removed \rightarrow opamp can have low input common-mode compliance
- Amplifier offset NOT removed

Differential T/H Including Offset Cancellation

- Operation during offset cancellation phase shown
- Auxiliary inputs added with $A_{main}/A_{aux} = 10$
- During offset cancellation phase:
 - Aux. amp configured in unity-gain mode: \rightarrow offset stored on C_{AZ} & canceled during the signal acquisition phase

Differential T/H Including Offset Cancellation

Operational Amplifier

- Operational amplifier \rightarrow dual input folded-cascode opamp
- M3,4 auxiliary input, M1,2 main input
- To achieve 1/10 gain ratio $W_{M3,4} = 1/10 \times W_{M1,2}$ & current sources are scaled by 1/10
- M5,6,7 \rightarrow common-mode control
- Output stage \rightarrow dual cascode \rightarrow high DC gain

$$V_{out} = g_{m1,2} o V_{in1} + g_{m3,4} o V_{in2}$$

Differential T/H Including Offset Cancellation Phase

- During offset cancellation phase AZ and S1 closed → main amplifier offset amplified by $\frac{g_{m1}}{g_{m2}}$ & stored on C_{AZ}
- Auxiliary amp chosen to have lower gain so that:
 - Aux. amp charge injection associated with opening of switch AZ → reduced by $\frac{A_{aux}}{A_{main}} = 1/10$
 - Insignificant increase in power dissipation resulting from addition of aux. inputs
- Requires an extra auto-zero clock phase

\[
(V_{INAZ+}-V_{INAZ-}) = -\frac{g_{m1,2}}{g_{m3,4}}V_{offset}
\]

Track & Hold Aperture Time Error

Transition from track to hold:
- Occurs when device turns fully off
 - $V_{CLK} = V_{in} + V_{TH}$
- Sharp fall-time wrt signal change
 - No aperture error
Track & Hold
Aperture Time Error

- Aperture error analysis applies to simple sampling network
- Bottom plate sampling → reduced aperture error
- Boosted clock → reduced aperture error

→ Clock edge fall/rise trade-off between switch charge injection versus aperture error

ADC Architecture & Design

ADC Architectures

- Slope type converters
- Successive approximation
- Flash
- Time-interleaved / parallel converter
- Folding
- Residue type ADCs
 - Two-step
 - Pipeline
 - ...
- Oversampled ADCs
Various ADC Architectures
Resolution/Conversion Rate

- Oversampled & Serial
- Algorithmic e.g. Succ. Approx.
- Subranging e.g. Pipelined
- Folding & Interpolative
- Parallel & Time Interleaved

Resolution versus Signal Bandwidth

Ref: S. Chen, R. Brodersen, "A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-µm CMOS: IEEE J. of Solid-State Circuits, Vol. 41, No. 12, December 2006."
Serial ADC
Single Slope

- Counter starts counting @ $V_{Ramp}=0$
- Counter stops counting for $V_{IN}=V_{Ramp}$

T_1 is proportional to V_{IN}
Counter output proportional to $T_1=nT_{clock}$
Counter output proportional to V_{IN}
$2^N \times T_{clock} = V_{FS}$
Single Slope ADC

- Advantages:
 - Low complexity & simple
 - INL depends on ramp linearity & not component matching
 - Inherently monotonic

- Disadvantages:
 - Slow \((2^N) \text{ clock pulses for N-bit conversion}) \text{(e.g. N=16)}
 \(f_{\text{clock}}=1\text{MHz} \rightarrow \text{needs 65000} \times 1\mu\text{s}=65\text{ms/conversion})\)
 - Hard to generate precise ramp required for high resolution ADCs
 - Need to calibrate ramp slope versus \(V_{IN} \)

- Better: Dual Slope, Multi-Slope

Serial ADC

Dual Slope

- First: \(V_{IN} \) is integrated for a fixed time \((2^N \times T_{CLK}) \)
 \(\rightarrow V_o = 2^N \times T_{CLK} \times V_{IN} \) \(/ \tau_{int} \)
- Next: \(V_o \) is de-integrated with \(V_{REF} \) until \(V_o = 0 \)
 \(\rightarrow \text{Counter output} = 2^N \times V_{IN} / V_{REF} \)
Dual Slope ADC

- Integrate V_{in} for fixed time (T_{INT}), de-integrate with V_{REF} applied $\Rightarrow T_{De-Int} \sim 2^N T_{CLK} V_{in}/V_{REF}$
- Most laboratory DVMs use this type of ADC

Dual Slope ADC

- **Advantage:**
 - Accuracy to 1st order independent of integrator time-constant and clock period
 - Comparator offset referred to input is attenuated by integrator high DC gain
 - Insensitive to most linear error sources
 - DNL is a function of clock jitter
 - Power line (60Hz) xtalk effect on reading can be canceled by: choosing conversion time multiple of 1/60Hz
 - High accuracy achievable (16+bit)

- **Disadvantage:**
 - Slow (maximum $2x2^N x T_{CLK}$ per conversion)
 - Integrator opamp offset results in ADC offset (can cancel)
 - Finite opamp gain gives rise to INL

http://www.maxim-ic.com/appnotes.cfm/appnote_number/1041
ADC Architectures

- Slope type converters
- Successive approximation
- Flash
- Time-interleaved / parallel converter
- Folding
- Residue type ADCs
 - Two-step
 - Pipeline
 - ...
- Oversampled ADCs

Successive Approximation ADC (SAR)

- Algorithmic type ADC
- Based on binary search over DAC output
Successive Approximation ADC

Example: 6-bit ADC & $V_{IN}=5/8V_{REF}$

- High accuracy achievable (16+ Bits)
- Need DAC to be accurate enough
- Require N clock cycles for N-bit conversion (much faster than slope type)
- Moderate speed (highest SAR conversion rate 2Ms/sec & 18 bits)

Example: SAR ADC

Charge Redistribution Type

- Built with binary weighted capacitors, switches, comparator & control logic
- T/H inherent in DAC
Charge Redistribution Type SAR DAC
Operation: Determining the MSB

- Operation starts by connecting all top plate to gnd and all bottom plates to \(V_{in}\).
- To test the MSB all top plate are opened bottom plate of 32C connected to \(V_{REF}\) & rest of bottom plates connected to ground → input to comparator= \(-V_{in} + V_{REF}/2\)
- Comparator is strobed to determine the polarity of input signal:
 - If negative MSB=1, else MSB=0
- The process continues until all bits are determined

Example: SAR ADC
Charge Redistribution Type

- To 1st order parasitic (\(C_p\)) insensitive since top plate driven from initial 0 to final 0 by the global negative feedback
- Linearity is a function of accuracy of C ratios
- Possible to add a C ratio calibration cycle (see Ref.)

ADC Architectures

- Slope type converters
- Successive approximation
- Flash
- Time-interleaved / parallel converter
- Folding
- Residue type ADCs
 - Two-step
 - Pipeline
 - ...
- Oversampled ADCs

Flash ADC

- B-bit flash ADC:
 - DAC generates all possible $2^B - 1$ levels
 - $2^B - 1$ comparators compare V_{IN} to DAC outputs
 - Comparator output:
 - If $V_{DAC} < V_{IN} \rightarrow 1$
 - If $V_{DAC} > V_{IN} \rightarrow 0$
 - Comparator outputs form thermometer code
 - Encoder converts thermometer to binary code
- Application example: 6-bit Flash ADC in Disk Drives with Gs/s conversion rate
Flash Converter Characteristics

- Very fast: only 1 clock cycle per conversion
 - \(\frac{1}{2} \) clock cycle \(\rightarrow \) \(V_{IN} \) & \(V_{DAC} \) comparison
 - \(\frac{1}{2} \) clock cycle \(\rightarrow 2^B - 1 \) to \(B \) encoding
- High complexity: \(2^B - 1 \) comparators
- Input capacitance of \(2^B - 1 \) comparators connected to the input node:
 - \(\rightarrow \) High capacitance @ input node
Flash ADC Converter Considerations

Assume simple comparator design

Depending on Vin level, lower comparators have M1 on & M2 off. Upper comparators have M1 off & M2 (m+n=2^k-1)

Total capacitance experienced by input source is a function of Vin

Also note Vin feedthrough to Vref taps via M1 & M2 G-S capacitance & Rs

When switches Mx open, charge injection and clock feedthru causes perturbation on R taps

Flash Converter Sources of Error

• Comparator input:
 – DC offset
 – Nonlinear input capacitance
 – Feedthrough of input signal to reference ladder
 – Kickback noise (disturbs reference)
 – Signal dependent sampling time (addition of T/H @ the input eliminates this problem)

• Comparator output:
 – Sparkle codes (… 0001011111)
 – Metastability
Flash ADC Converter
Example: 8-bit ADC Comparator Offset Considerations

- 8-bit → 255 comparators
- $V_{\text{REF}} = 1\, \text{V} \rightarrow 1\text{LSB} = 4\, \text{mV}$
- DNL < 1/2LSB → Comparator input referred offset < 2mV
- Assuming close to 100% yield, 2mV = 6σ_{offset} → $\sigma_{\text{offset}} < 0.33\, \text{mV}$

\[
\text{Encoder}
\]
\[
\begin{array}{c}
\text{Digital} \\
\text{Output}
\end{array}
\]

Flash ADC Converter
Example: 8-bit ADC (continued)

→ $1\sigma_{\text{offset}} < 0.33\, \text{mV}$

- Let us assume in the technology used:
 - Offset-per-unit-$\sqrt{W \times L}$ = 3mV/μ

\[
V_{\text{offset}} = \frac{3\, \text{mV}}{\sqrt{W \times L}} = 0.33\, \text{mV} \rightarrow W \times L = 83\, \mu^2
\]

Assuming: $C_{\text{ox}} = 9\, \mu F / \mu^2 \rightarrow C_{\text{gs}} = \frac{2}{3} C_{\text{ox}} W \times L = 496\, \mu F$

→ Total max. input capacitance: $255 \times 0.496 = 126.5\, \mu F$

- Issues:
 - Si area quite large
 - Large ADC input capacitance
 - Since depending on input voltage level different number of comparator input transistors would be on/off - total input capacitance varies as input varies
 - Nonlinear input capacitance could give rise to signal distortion

Flash ADC Converter
Example (continued)

Trade-offs:
- Allowing larger DNL e.g. 1LSB instead of 0.5LSB:
 - Increases the maximum allowable input-referred offset voltage by a factor of 2
 - Decreases the required device WxL by a factor of 4
 - Reduces the input device area by a factor of 4
 - Reduces the input capacitance by a factor of 4!
- Reducing the ADC resolution by 1-bit
 - Increases the maximum allowable input-referred offset voltage by a factor of 2
 - Decreases the required device WxL by a factor of 4
 - Reduces the input device area by a factor of 4
 - Reduce the input capacitance by a factor of 4

Flash Converter
Maximum Tolerable Comparator Offset versus ADC Resolution

Assumption:
\(DNL = 0.5\text{LSB} \)

Note:
Graph shows max. tolerable offset, note that depending on min acceptable yield, the derived offset numbers are associated with 2\(\sigma\) to 6\(\sigma\) offset voltage.
Typical Flash ADC Output Encoder

- Thermometer code → 1-of-n decoding
- Final encoding → NOR ROM
- Ideally, for each code, only one ROM row is on

Sparkle Codes

- Erroneous 0 (comparator offset?)
- Correct Output: 1000
- Problem: Two rows are on
- Erroneous Output: 1110
- → Up to ~ ½ FS error!!
Sparkle Tolerant Encoder

- Protects against a single sparkle.
- Possible to improve level of sparkle protection by increasing # of NAND gate inputs

Ref: C. Mangelsdorf et al, “A 400-MHz Flash Converter with Error Correction,” JSSC February 1990, pp. 997-1002

Meta-Stability

Different gates interpret metastable output X differently

Correct output: 1000
Erroneous output: 0000

Solutions:
- Add latches to comparator outputs (high power)
- Gray encoding

Gray Encoding

Example: 3bit ADC

<table>
<thead>
<tr>
<th>Thermometer Code</th>
<th>Gray</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_7 T_6 T_5 T_4 T_3 T_2 T_1</td>
<td>G_3 G_2 G_1</td>
<td>B_3 B_2 B_1</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 1 0 0</td>
<td>0 0 1</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 0 0 1 1 1 1 1</td>
<td>0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 1 1 1 1 1 1 1</td>
<td>1 1 0</td>
<td>1 1 0</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>1 0 0</td>
<td>1 1 0</td>
</tr>
</tbody>
</table>

- Each T_i affects only one G_i
- Metastability in one T output affects only one of the G bits (unlike binary)
- Protects also against sparkles
- Follow Gray encoder by (latch and) Gray-to-binary encoder

\[G_1 = T_1 \overline{T_3} + T_5 \overline{T_7} \]
\[G_2 = T_2 \overline{T_6} \]
\[G_3 = T_4 \]

Voltage Comparators

Play an important role in majority of ADCs
Function: Compare the instantaneous value of two analog signals & generate a digital output voltage based on the sign of the difference:

If \(V_{i+} - V_{i-} > 0 \) \(\rightarrow \) \(V_{out} = "1" \)
If \(V_{i+} - V_{i-} < 0 \) \(\rightarrow \) \(V_{out} = "0" \)
Voltage Comparator Architectures

Comparator architecture choices:

- High gain amplifier with differential analog input & single-ended large swing output
 - Output swing has to be compatible with driving digital logic circuits
 - Open-loop amplification → no frequency compensation required
 - Precise or linear transfer function not required

- Latched comparators; in response to a strobe (clock edge), input stage disabled & digital output stored in a latch till next strobe
 - Two options for implementation:
 • Latch-only comparator
 • Low-gain preamplifier + high-sensitivity latch

- Sampled-data comparators
 - T/H input
 - Offset cancellation

Comparator Built with High-Gain Amplifier

Amplify $V_{\text{in}}(\text{min})$ to V_{DD}
$\rightarrow V_{\text{in}}(\text{min})$ determined by ADC resolution

Example: 12-bit ADC with:
- $V_{\text{FS}} = 1.5V \rightarrow 1\text{LSB} = 0.36\text{mV}$
- $V_{\text{DD}} = 1.8V$

\rightarrow For 1.8V output & 0.5LSB resolution:

$$A_{\text{Mo}} = \frac{1.8V}{0.18\text{mV}} \approx 10,000$$
Comparator Design

1- Single-Stage Amplification

- Amplifier maximum Gain-Bandwidth product \(f_u \) for a given technology, typically a function of maximum device \(f_t \)

\[f_u = \text{unity-gain frequency, } f_e = \text{-3dB frequency} \]

\[f_u = \frac{f_u}{A_v} \]

Example: \(f_u = 10^{10} \text{GHz} \) & \(A_v = 10,000 \)

\[f_u = \frac{10^{10}}{10,000} \approx 1 \text{MHz} \]

\[\tau_{\text{settling}} = \frac{1}{2\pi f_u} \approx 0.16 \mu s \]

Allow a few \(\tau \) for output to settle

\[f_{\text{Max}} = \frac{1}{5\tau_{\text{settling}}} \approx 1.26 \text{MHz} \]

Too slow for majority of applications!

→ Try cascade of lower gain stages to broaden frequency of operation

Assumption: Single pole amplifier

Comparator Design

2- Cascade of Open Loop Amplifiers

The stages identical → small-signal model for the cascades:

- One stage:

\[|A_v(0)| = g_m R_L \]

\[\omega_0 = -3 \text{dB frequency} = \frac{1}{R_L C_T} \]

\[\omega_u = -\text{unity gain frequency} = G \times \text{BW} = \frac{g_m}{C_T} \]

\[\omega_b = \frac{\omega_u}{|A_v(0)|} \]
Open Loop Cascade of Amplifiers

For an N-stage cascade:

\[A_T(j\omega) = \left(A_T(0) \right) \frac{N}{1 + \frac{\omega}{\omega_{0N}}} \]

Define

\[\omega_{0N} = -3\text{dB frequency of the N-stage cascade} \]

Then

\[|A_T(j\omega_{0N})| = \frac{|A_T(0)|^N}{\sqrt{2}} \]

and

\[\omega_{0N} = \frac{\omega_N}{\sqrt{2^{N-1}}} = \frac{\omega_N}{|A_T(0)|\sqrt{2^{N-1}}} \]

Example: N=4, A_T=10000 \[\Rightarrow\] \omega_{0N}=430\omega_N

Open Loop Cascade of Amplifiers

For \(|A_T(\text{DC})|=10,000\)

| N | \(\omega_{0N}/\omega_N\) | \(|A_T(0)|\) |
|---|---|---|
| 1 | 1 | 10,000 |
| 2 | 64 | 100 |
| 3 | 236 | 21.5 |
| 4 | 435 | 10 |
| 5 | 611 | 6.3 |
| 10 | 1067 | 2.5 |
| 20 | 1185 | 1.6 |

Example:

\(N=3, f_d=10\text{GHz} \quad \& \quad |A_T(0)|=10000\)

\[f_{ON} = \frac{10\text{GHz}}{(10,000)^{1/3}} \approx 237\text{MHz} \]

\[\tau_{\text{setting}} = \frac{1}{2\pi f_o} = 0.7\text{ns} \]

Allow a few \(\tau\) for output to settle

\[f_{\text{Clock}} \rightarrow \frac{1}{5\tau_{\text{setting}}} \approx 290\text{MHz} \]

\(f_{\text{max}}\) improved from 1.26MHz to 290MHz \[\Rightarrow\] X236
Open Loop Cascade of Amplifiers

Offset Voltage

- From offset point of view: high gain/stage is preferred
- Choice of # of stage \(\rightarrow \) bandwidth vs offset tradeoff

\[
A_T = A_1 \cdot A_2 \cdot A_3
\]

Input-referred offset \(\rightarrow V_{os} = \frac{V_{os1} + V_{os2} + V_{os3}}{A_1 \cdot A_2} \)

Open Loop Cascade of Amplifiers

Step Response

- Assuming linear behavior (not slew limited)

\[
\begin{align*}
V_{o1} &= \frac{1}{C_1} \int_0^t g_m v_{in} dt = \frac{g_m v_{in}}{C} t \\
V_{o2} &= \frac{1}{C_2} \int_0^t g_m V_{o1} dt = \frac{g_m}{2C} t V_{in}^2 \\
V_{o3} &= \frac{1}{C_3} \int_0^t g_m V_{o2} dt = \frac{g_m}{3C} t^3 V_{in}^3 \\
\end{align*}
\]
Open Loop Cascade of Amplifiers
Step Response

• Assuming linear behavior

\[\frac{C}{g_m} \] \[N + 1 \text{ stages} \]

\[V_{out} = \left(\frac{g_m}{C} \right)^N \left(\frac{t}{N} \right) V_{in} \]

For the output to reach a specified \(V_{out} \) (i.e., \(V_{out} = V_{in} \)) the delay is

\[\tau_D = \left(\frac{C}{g_m} \right)^{\left(\frac{t}{V_{out}/V_{in}} \right)} \]