1. MOSFET Equations

a) N-channel MOSFET

Cut Off	$V_{G S} \leq V_{T}$	$I_{D S}=0$
Linear	$V_{G S}>V_{T}, V_{D S} \leq V_{G S}-V_{T}$	$I_{D S}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{V_{D S}{ }^{2}}{2}\right]\left(1+\lambda V_{D S}\right)$
Saturation	$V_{G S}>V_{T}, V_{D S}>V_{G S}-V_{T}$	$I_{D S}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)$

The simplest model in SPICE (Level 1 or default model) uses the above equations.

Parameter	SPICE Parameter	Units	Typical Values
$\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}$	KP	$\mathrm{A} / \mathrm{V}^{2}$	200μ
$\mathrm{~V}_{\mathrm{T} 0}$	VTO	V	$0.5-1.0$
λ	LAMBDA	V^{-1}	$0.05-0.005$

b) P-channel MOSFET

Cut Off	$V_{S G} \leq\left\|V_{T}\right\|$	$I_{S D}=0$
Linear	$V_{S G}>\left\|V_{T}\right\|, V_{S D} \leq V_{S G}-\left\|V_{T}\right\|$	$I_{S D}=\mu_{p} C_{o x} \frac{W}{L}\left[\left(V_{S G}-\left\|V_{T}\right\|\right) V_{S D}-\frac{V_{S D}{ }^{2}}{2}\right]\left(1+\lambda V_{S D}\right)$
Saturation	$V_{S G}>\left\|V_{T}\right\|, V_{S D}>V_{S G}-\left\|V_{T}\right\|$	$I_{S D}=\frac{1}{2} \mu_{p} C_{o x} \frac{W}{L}\left(V_{S G}-\left\|V_{T}\right\|\right)^{2}\left(1+\lambda V_{S D}\right)$

Example)
$\mathrm{V}_{\mathrm{S}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}=-0.8 \mathrm{~V}, \lambda=0, \mathrm{Kp}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$
$\mathrm{W}=10 \mu \mathrm{~m}, \mathrm{~L}=2 \mu \mathrm{~m}$
Find MOSFET type, operation region, I_{DS}.

- Solution
$\left|V_{D S}\right|>\left|V_{G S}\right|-\left|V_{T}\right| \Rightarrow$ saturation
$I_{S D}=\frac{100 \mu}{2} \frac{10 \mu}{2 \mu}(2-\mid-0.8)^{2}(1+0)=360 \mu A$
$I_{D S}=-360 \mu A$

2. MOSFET Circuits

Example) The PMOS transistor has $\mathrm{V}_{\mathrm{T}}=-2 \mathrm{~V}, \mathrm{Kp}=8 \mu \mathrm{~A} / \mathrm{V}^{2}$, $\mathrm{L}=10 \mu \mathrm{~m}, \lambda=0$.
Find the values required for W and R in order to establish a drain current of 0.1 mA and a voltage V_{D} of 2 V .

- Solution
$V_{D}=V_{G} \Rightarrow V_{S D}>V_{S G}-\left|V_{T}\right| \Rightarrow$ saturation
$\left|I_{D S}\right|=\frac{1}{2} K p \frac{W}{L}\left(V_{S G}-\left|V_{T}\right|\right)^{2}\left(1+\lambda V_{S D}\right)=\frac{8 \mu}{2} \frac{W}{10 \mu}(3-2)^{2}(1+0)=0.1 m A$
$I_{R}=\frac{V_{D}}{R}=\frac{2}{R}=0.1 \mathrm{~mA}$
$W=250 \mu m, \quad R=20 k \Omega$

Example) The PMOS transistor has $\mathrm{V}_{\mathrm{T}}=-1 \mathrm{~V}, \mathrm{Kp}=8 \mu \mathrm{~A} / \mathrm{V}^{2}$, $\mathrm{W} / \mathrm{L}=25, \lambda=0$.
For $\mathrm{I}=100 \mu \mathrm{~A}$, find the $V_{S D}$ and $V_{S G}$ for $R=0,10 \mathrm{k}, 30 \mathrm{k}, 100 \mathrm{k}$.

- Solution
$\lambda=0$ (no channel length modulation)

1) $R=0$
$V_{D}=V_{G} \Rightarrow V_{S D}>V_{S G}-\left|V_{T}\right| \Rightarrow$ saturation
$I_{S D}=\frac{1}{2} K p \frac{W}{L}\left(V_{S G}-\left|V_{T}\right|^{2}=\frac{8 \mu}{2} \cdot 25 \cdot\left(V_{S G}-1\right)^{2}=100 \mu\right.$
$V_{S G}=2 V \quad V_{S D}=2 V$

2) $R=10 k$
$V_{D}-V_{G}=I R=100 \mu \cdot 10 k=1 \Rightarrow V_{S D}=V_{S G}-\left|V_{T}\right| \Rightarrow$ saturation or linear
$I_{S D}=\frac{1}{2} K p \frac{W}{L}\left(V_{S G}-\left|V_{T}\right|\right)^{2}=\frac{8 \mu}{2} \cdot 25 \cdot\left(V_{S G}-1\right)^{2}=100 \mu$
$V_{S G}=2 V \quad V_{S D}=1 V$
3) $R=30 k$
$V_{D}-V_{G}=I R=100 \mu \cdot 30 k=3 \Rightarrow V_{S D}<V_{S G}-\left|V_{T}\right| \Rightarrow$ linear
$I_{S D}=K p \frac{W}{L}\left(\left(V_{S G}-\left|V_{T}\right|\right) V_{S D}-\frac{V_{S D}{ }^{2}}{2}\right)=8 \mu \cdot 25 \cdot\left(\left(V_{S D}+3-1\right) V_{S D}-\frac{V_{S D}{ }^{2}}{2}\right)=100 \mu$
$V_{S D} \approx 0.24 \mathrm{~V} \quad V_{S G}=3.24 \mathrm{~V}$
4) $R=100 k$
$V_{D}-V_{G}=I R=100 \mu \cdot 100 k=10 \Rightarrow V_{S D}<V_{S G}-\left|V_{T}\right| \Rightarrow$ linear
$I_{S D}=K p \frac{W}{L}\left(\left(V_{S G}-\left|V_{T}\right|\right) V_{S D}-\frac{V_{S D}{ }^{2}}{2}\right)=8 \mu \cdot 25 \cdot\left(\left(V_{S D}+10-1\right) V_{S D}-\frac{V_{S D}{ }^{2}}{2}\right)=100 \mu$
$V_{S D} \approx 0.06 \mathrm{~V} \quad V_{S G}=10.06 \mathrm{~V}$
