
Algorithmic Complexity

Algorithmic Complexity

"Algorithmic Complexity", also called "Running Time" or
"Order of Growth", refers to the number of steps a program
takes as a function of the size of its inputs. In this class, we
will assume the function only has one input, which we will say
has length n.

Algorithmic Complexity

Notes on Notation:

Algorithmic complexity is usually expressed in 1 of 2
ways. The first is the way used in lecture - "logarithmic",
"linear", etc. The other is called Big-O notation. This is a more
mathematical way of expressing running time, and looks more
like a function. For example, a "linear" running time can also
be expressed as O(n). Similarly, a "logarithmic" running time
can be expressed as O(log n).

Algorithmic Complexity

Here is a list of some common running times:

Constant O(1)
Logarithmic O(log n)
Linear O(n)
Quadratic O(n2)
Cubic O(n3)
Exponential O(2n)

We will talk about each briefly.

Constant-Time Algorithms - O(1)

A constant-time algorithm is one that takes the same amount
of time, regardless of its input. Here are some examples:

●Given two numbers*, report the sum
●Given a list, report the first element
●Given a list of numbers*, report the result of adding the first

element to itself 1,000,000 times

Why is the last example still constant time?

*Here, we are referring to numbers of a set maximum size (i.e. 32-bit numbers, 64-bit numbers, etc.)

Logarithmic-Time Algorithm - O(log n)

A logarithmic-time algorithm is one that requires a number of
steps proportional to the log(n). In most cases, we use 2 as
the base of the log, but it doesn't matter which base because
we ignore constants. Because we use the base 2, we can
rephrase this in the following way: every time the size of the
input doubles, our algorithm performs one more
step. Examples:

●Binary search
●Searching a tree data structure (we'll see what this is later)

Linear-Time Algorithms - O(n)

A linear-time algorithm is one that takes a number of steps
directly proportional to the size of the input. In other words,
if the size of the input doubles, the number of steps
doubles. Examples:

●Given a list of words, say each item of a list
●Given a list of numbers, add each pair of numbers together

(item 1 + item 2, item 3 + item 4, etc.)
●Given a list of numbers, multiply every 3rd number by 2

Again, why is the last algorithm still linear?

Quadratic-Time Algorithms - O(n2)

A quadratic-time algorithm is one takes a number of steps
proportional to n2. That is, if the size of the input doubles, the
number of steps quadruples. A typical pattern of quadratic-
time algorithms is performing a linear-time operation on each
item of the input (n steps per item * n items = n2
steps). Examples:

● Compare each item of a list against all the other items in
the list

● Fill in a n-by-n game board

Cubic-Time Algorithms - O(n3)

A cubic-time algorithm is one that takes a number of steps
proportional to n3. In other words, if the input doubles, the
number of steps is multiplied by 8. Similarly to the quadratic
case, this could be the result of applying an n2 algorithm to n
items, or applying a linear algorithm to n2 items. Examples:

●Fill in a 3D board (or environment)
●For each object in a list, construct an n-by-n bitmap drawing

of the object

Exponential-Time Algorithms - O(2n)

An exponential-time algorithm is one that takes time
proportional to 2n. In other words, if the size of the input
increases by one, the number of steps doubles. Note that
logarithms and exponents are inverses of each
other. Algorithms in this category are often considered too
slow to be practical, especially if the input is typically
large. Examples:

●Given a number n, generate a list of every n-bit binary
number

What is the runtime?

What is the runtime?

Linear

What is the runtime?

What is the runtime?

Quadratic

What is the runtime?

What is the runtime?

Quadratic

What is the runtime?

What is the runtime?

Linear

What is the runtime?

What is the runtime?

Logarithmic

What is the runtime?

Take a look at the code to the
right. What is it doing? What is
its running time? Hint: it drew the
picture below.

What is the runtime?

Take a look at the code to the
right. What is it doing? What is
its running time? Hint: it drew the
picture below.

Quadratic

What is the runtime?

What is the runtime?

Logarithmic

What is the runtime?

What is the runtime?

Linear * Logarithmic
O(nlogn)

What is the run-time?

What is the run-time?

Constant

