Computer Architecture and Binary Encodings

Computers of Different Shapes

Computer System Components

- 1. Hardware provides basic computing resources (CPU, memory, I/O devices, network)
- 2. Operating system controls and coordinates the use of the hardware among the various application programs for the various users
- 3. Applications programs define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs)
- 4. Users (people, machines, other computers)

How Do Computers Work?

Data Representation

- All data stored in and manipulated by a digital computer are represented by patterns of bits:
 - Numbers
 - Text characters
 - Sound
 - Images and videos
 - Anything else...

Bit

- Binary Digit = a symbol whose meaning depends on the application at hand
- Binary: takes on values of '0' or '1'
 - Or equivalently, "FALSE" or "TRUE", "OFF" or "ON"

Bytes

- A sequence of bits
- 8 bits = 1 byte

Kilobyte (KB)	1024 or 2 ¹⁰ by	tes 1,024 bytes	Thousands of bytes
Megabyte (MB)	1024 ² or 2 ²⁰ byt	_{tes} 1,048,578 bytes	Millions of bytes
(95)			Billions of bytes
Terabyte (TB)	1024 ⁴ or 2 ⁴⁰ byt	1,099,511,627,776 bytes	Trillions of bytes

How binary works?

Number System

DIGIT * BASE POSITION #

```
4*10^2 = 4*100 = 400.
6*10^1 = 6*10 = 60.
2*10^0 = 2*1 = 2.
1*10^{-1} = 1*.1 = 0.1
5*10^{-2} = 5*.01 = +0.05
462.15
```

Binary Number System

DIGIT * BASE POSITION #

110

Fours	Twos	Ones
2 ²	2 ¹	20
1	1	0

$$1*2^{2} = 1*4 = 4$$
 $1*2^{1} = 1*2 = 2$
 $0*2^{0} = 0*1 = 0$

=6 decimal

Convert Decimal to Binary

•
$$13 = 8 + 4 + 1 = 1101$$

What if we have a big number?

Convert Decimal to Binary

- Step 1. Divide the value by two and record the remainder.
- **Step 2.** As long as the quotient obtained is not zero, continue to divide the newest quotient by two and record the remainder.
- **Step 3.** Now that a quotient of zero has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded.

Try it!

- 1011001 to decimal
- 10110010 to decimal
- 15 to binary
- 30 to binary
- 31 to binary

Computer Anatomy

- Motherboard
- Power Supply
- CPU Heatsink/Fan
- CPU (Central Processing Unit)
- RAM (Random Access Memory)
- Hard Drive
- Optical Drive
- Graphic Card
- Sounds Card
- Computer Case