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Today is a review of last two lectures 
•  Translation/Protection/Virtual Memory 
•  This is complex material - often takes several passes 

before the concepts sink in 
•  Try to take a different path through concepts today 
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VM features track historical uses: 
•  Bare machine, only physical addresses 

–  One program owned entire machine 
•  Batch-style multiprogramming 

–  Several programs sharing CPU while waiting for I/O 
–  Base & bound: translation and protection between programs (not virtual 

memory) 
–  Problem with external fragmentation (holes in memory), needed occasional 

memory defragmentation as new jobs arrived 
•  Time sharing 

–  More interactive programs, waiting for user.  Also, more jobs/second. 
–  Motivated move to fixed-size page translation and protection, no external 

fragmentation (but now internal fragmentation, wasted bytes in page) 
–  Motivated adoption of virtual memory to allow more jobs to share limited 

physical memory resources while holding working set in memory 
•  Virtual Machine Monitors 

–  Run multiple operating systems on one machine 
–  Idea from 1970s IBM mainframes, now common on laptops 

»  e.g., run Windows on top of Mac OS X 
–  Hardware support for two levels of translation/protection 

»  Guest OS virtual -> Guest OS physical -> Host machine physical 
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Bare Machine 

•  In a bare machine, the only kind of address is a 
physical address 
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Base and Bound Scheme 

Logical address is what user software sees.  Translated to 
physical address by adding base register. 
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Base and Bound Machine 
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Memory Fragmentation 

  As users come and go, the storage is “fragmented”.  
  Therefore, at some stage programs have to be moved 
  around to compact the storage.  

OS 
Space 

16K 

24K 

24K 

32K 

24K 

user 1 

user 2 

user 3 

OS 
Space 

16K 

24K 

16K 

32K 

24K 

user 1 

user 2 

user 3 

user 5 

user 4 
8K 

Users 4 & 5  
arrive 

Users 2 & 5 
leave 

OS 
Space 

16K 

24K 

16K 

32K 

24K 

user 1 

user 4 
8K 

user 3 

free 



February 25, 2010 CS152, Spring 2010 8 

•  Processor generated address can be interpreted as a pair 
<page number, offset> 

•  A page table contains the physical address of the base of 
each page


Paged Memory Systems 

Page tables make it possible to store the 
pages of a program non-contiguously. 
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Private Address Space per User 

•  Each user has a page table  
•  Page table contains an entry for each user page 
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Linear Page Table 
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•  Page Table Entry (PTE) 
contains: 
–  A bit to indicate if a page exists 
–  PPN (physical page number) for 

a memory-resident page 
–  DPN (disk page number) for a 

page on the disk 
–  Status bits for protection and 
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•  OS sets the Page Table 
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Page Tables in Physical Memory 
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Size of Linear Page Table 

With 32-bit addresses, 4-KB pages & 4-byte PTEs: 
⇒   220 PTEs, i.e, 4 MB page table per user 
⇒  4 GB of swap needed to back up full virtual address 

   space 

Larger pages? 
•  Internal fragmentation (Not all memory in a page is used) 
•  Larger page fault penalty (more time to read from disk) 

What about 64-bit virtual address space??? 
•  Even 1MB pages would require 244  8-byte PTEs (35 TB!) 

                          What is the “saving grace” ?  
    sparsity of virtual address usage 
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Hierarchical (Two-Level) Page Table 
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Two-Level Page Tables in Physical 
Memory 
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Address Translation & Protection 

•  Every instruction and data access needs address  
  translation and protection checks 

A good VM design needs to be fast (~ one cycle) and 
space efficient 
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Translation Lookaside Buffers 

Address translation is very expensive! 
In a two-level page table, each reference 
becomes several memory accesses 

Solution: Cache translations in TLB 
  TLB hit  ⇒ Single Cycle Translation 
       TLB miss  ⇒ Page Table Walk to refill  
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Handling a TLB Miss 

Software (MIPS, Alpha) 
TLB miss causes an exception and the operating system 
walks the page tables and reloads TLB. A privileged 
“untranslated”  addressing mode used for walk 

Hardware (SPARC v8, x86, PowerPC) 
A memory management unit (MMU) walks the page 
tables and reloads the TLB 

If a missing (data or PT) page is encountered during the 
TLB reloading, MMU gives up and signals an exception 
for the original instruction   
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Page-Based Virtual Memory Machine 
(Hardware Page Table Walk) 
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CS152 Administrivia 
•  Tuesday Mar 9, Quiz 2 

–  Cache and virtual memory lectures, L6-L11,  PS 2, Lab 2 
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Virtual Memory 
•  More than just translation and protection 
•  Use disk to extend apparent size of main memory 
•  Treat DRAM as cache of disk contents 
•  Only need to hold active working set of processes in 

DRAM, rest of memory image can be swapped to disk 
•  Inactive processes can be completely swapped to disk 

(except usually the root of the page table) 
•  Combination of hardware and software used to 

implement this feature 
•  (ATLAS was first implementation of this idea) 
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Page Fault Handler 

•  When the referenced page is not in DRAM: 
–  The missing page is located (or created) 
–  It is brought in from disk, and page table is updated 

   Another job may be run on the CPU while the first job waits 
for the requested page to be read from disk 

–  If no free pages are left, a page is swapped out 
   Pseudo-LRU replacement policy   

•  Since it takes a long time to transfer a page 
(msecs), page faults are handled completely in 
software by the OS 

– Untranslated addressing mode is essential to allow kernel 
to access page tables 
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Caching vs. Demand Paging 
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a miss is handled            a miss is handled  
     in hardware                  mostly in software 
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Address Translation: 
putting it all together 
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Address Translation in CPU Pipeline 

•  Software handlers need restartable exception on TLB fault 
•  Handling a TLB miss needs a hardware or software mechanism to refill TLB  
•  Need mechanisms to cope with the additional latency of a TLB: 

–    slow down the clock 
–    pipeline the TLB and cache access 
–    virtual address caches 
–    parallel TLB/cache access 
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Virtual Address Caches 

•  one-step process in case of a hit (+) 
•  cache needs to be flushed on a context switch unless address 

space identifiers (ASIDs) included in tags (-) 
•  aliasing problems due to the sharing of pages (-) 
•  maintaining cache coherence (-)   (see later in course) 
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Aliasing in Virtual-Address Caches 
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to reads of other! 

General Solution:  Disallow aliases to coexist in cache 

Software (i.e., OS) solution for direct-mapped cache 

VAs of shared pages must agree in cache index bits; this 
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs) 
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Concurrent Access to TLB & Cache 

Index L is available without consulting the TLB 
⇒ cache and TLB accesses can begin simultaneously 

Tag comparison is made after both accesses are completed 

Cases: L + b = k  L + b < k  L + b > k 
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Virtual-Index Physical-Tag Caches: 
Associative Organization 

Is this scheme realistic? 
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Concurrent Access to TLB & Large L1 
The problem with L1 > Page size 

Can VA1 and VA2 both map to PA ?  
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A solution via Second Level Cache 

Often, a common L2 cache backs up both 
Instruction and Data L1 caches 

L2 is “inclusive” of both Instruction and Data caches 
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Anti-Aliasing Using L2: MIPS R10000 
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•  Suppose VA1 and VA2 both map to PA and VA1 is 
already in L1, L2 (VA1 ≠ VA2) 

•  After VA2 is resolved to PA, a collision will be 
detected in L2. 

•  VA1 will be purged from L1 and L2, and VA2 will be 
loaded  ⇒ no aliasing !  
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Virtually-Addressed L1: 
Anti-Aliasing using L2 
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Atlas Revisited 

•  One PAR for each physical page 

•  PAR’s contain the VPN’s of the pages 
resident in primary memory 

•  Advantage:  The size is proportional to 
the size of the primary memory 

•  What is the disadvantage ? 
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Hashed Page Table: 
Approximating Associative Addressing 

hash 
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Base of Table 
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•  Hashed Page Table is typically 2 to 3 times larger 
than the number of PPN’s to reduce collision 
probability  

•  It can also contain DPN’s for some non-resident 
pages (not common) 

•  If a translation cannot be resolved in this table then 
the software consults a data structure that has an 
entry for every existing page 
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