
February 25, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 11 - Virtual Memory and Caches

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

February 25, 2010 CS152, Spring 2010 2

Today is a review of last two lectures
•  Translation/Protection/Virtual Memory
•  This is complex material - often takes several passes

before the concepts sink in
•  Try to take a different path through concepts today

February 25, 2010 CS152, Spring 2010 3

VM features track historical uses:
•  Bare machine, only physical addresses

–  One program owned entire machine
•  Batch-style multiprogramming

–  Several programs sharing CPU while waiting for I/O
–  Base & bound: translation and protection between programs (not virtual

memory)
–  Problem with external fragmentation (holes in memory), needed occasional

memory defragmentation as new jobs arrived
•  Time sharing

–  More interactive programs, waiting for user. Also, more jobs/second.
–  Motivated move to fixed-size page translation and protection, no external

fragmentation (but now internal fragmentation, wasted bytes in page)
–  Motivated adoption of virtual memory to allow more jobs to share limited

physical memory resources while holding working set in memory
•  Virtual Machine Monitors

–  Run multiple operating systems on one machine
–  Idea from 1970s IBM mainframes, now common on laptops

»  e.g., run Windows on top of Mac OS X
–  Hardware support for two levels of translation/protection

»  Guest OS virtual -> Guest OS physical -> Host machine physical

February 25, 2010 CS152, Spring 2010 4

Bare Machine

•  In a bare machine, the only kind of address is a
physical address

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

February 25, 2010 CS152, Spring 2010 5

Base and Bound Scheme

Logical address is what user software sees. Translated to
physical address by adding base register.

Physical
Address

Physical
Address

Load X

Program
Address
Space

M
ai

n
M

em
or

y

data
segment

Data Bound
Register

Mem. Address
Register

Data Base
Register

≤

+

Bounds
Violation?

Program Bound
Register

Program
Counter

Program Base
Register

≤

+

Bounds
Violation?

program
segment

Logical
Address

Logical
Address

February 25, 2010 CS152, Spring 2010 6

Base and Bound Machine

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

≤

+

[Can fold addition of base register into (base+offset) calculation
using a carry-save adder (sum three numbers with only a few
gate delays more than adding two numbers)]

Logical
Address

Bounds
Violation?

Physical
Address

Prog. Bound
Register

Program Base
Register

≤

+

Logical
Address

Bounds
Violation?

February 25, 2010 CS152, Spring 2010 7

Memory Fragmentation

 As users come and go, the storage is “fragmented”.
 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4
8K

Users 4 & 5
arrive

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

February 25, 2010 CS152, Spring 2010 8

•  Processor generated address can be interpreted as a pair
<page number, offset>

•  A page table contains the physical address of the base of
each page

Paged Memory Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

February 25, 2010 CS152, Spring 2010 9

Private Address Space per User

•  Each user has a page table
•  Page table contains an entry for each user page

VA1 User 1

Page Table

VA1 User 2

Page Table

VA1 User 3

Page Table

Ph
ys

ic
al

M

em
or

y

free

OS
pages

February 25, 2010 CS152, Spring 2010 10

Linear Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

•  Page Table Entry (PTE)
contains:
–  A bit to indicate if a page exists
–  PPN (physical page number) for

a memory-resident page
–  DPN (disk page number) for a

page on the disk
–  Status bits for protection and

usage
•  OS sets the Page Table

Base Register whenever
active user process
changes

February 25, 2010 CS152, Spring 2010 11

Page Tables in Physical Memory

VA1

User 1

PT User 1

PT User 2

VA1

User 2

February 25, 2010 CS152, Spring 2010 12

Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:
⇒  220 PTEs, i.e, 4 MB page table per user
⇒  4 GB of swap needed to back up full virtual address

 space

Larger pages?
•  Internal fragmentation (Not all memory in a page is used)
•  Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
•  Even 1MB pages would require 244 8-byte PTEs (35 TB!)

 What is the “saving grace” ?
 sparsity of virtual address usage

February 25, 2010 CS152, Spring 2010 13

Hierarchical (Two-Level) Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

February 25, 2010 CS152, Spring 2010 14

Two-Level Page Tables in Physical
Memory

VA1

User 1

User1/VA1
User2/VA1

Level 1 PT
User 1

Level 1 PT
User 2

VA1

User 2

Level 2 PT
User 2

Virtual
Address
Spaces

Physical
Memory

February 25, 2010 CS152, Spring 2010 15

Address Translation & Protection

•  Every instruction and data access needs address
 translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

February 25, 2010 CS152, Spring 2010 16

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
 TLB hit ⇒ Single Cycle Translation
 TLB miss ⇒ Page Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

February 25, 2010 CS152, Spring 2010 17

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals an exception
for the original instruction

February 25, 2010 CS152, Spring 2010 18

Page-Based Virtual Memory Machine
(Hardware Page Table Walk)

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W +

Page Fault?
Protection violation?

Page Fault?
Protection violation?

•  Assumes page tables held in untranslated physical memory

Data
TLB

Main Memory (DRAM)

Memory Controller

Physical
Address Physical

Address

Physical Address

Physical
Address

Page Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

February 25, 2010 CS152, Spring 2010 19

CS152 Administrivia
•  Tuesday Mar 9, Quiz 2

–  Cache and virtual memory lectures, L6-L11, PS 2, Lab 2

February 25, 2010 CS152, Spring 2010 20

Virtual Memory
•  More than just translation and protection
•  Use disk to extend apparent size of main memory
•  Treat DRAM as cache of disk contents
•  Only need to hold active working set of processes in

DRAM, rest of memory image can be swapped to disk
•  Inactive processes can be completely swapped to disk

(except usually the root of the page table)
•  Combination of hardware and software used to

implement this feature
•  (ATLAS was first implementation of this idea)

February 25, 2010 CS152, Spring 2010 21

Page Fault Handler

•  When the referenced page is not in DRAM:
–  The missing page is located (or created)
–  It is brought in from disk, and page table is updated

 Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

–  If no free pages are left, a page is swapped out
 Pseudo-LRU replacement policy

•  Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS

– Untranslated addressing mode is essential to allow kernel
to access page tables

February 25, 2010 CS152, Spring 2010 22

Caching vs. Demand Paging

CPU cache
primary
memory

secondary
memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled
 in hardware mostly in software

primary
memory

CPU

February 25, 2010 CS152, Spring 2010 23

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address

(to cache)

miss hit

 the page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Restart instruction

February 25, 2010 CS152, Spring 2010 24

Address Translation in CPU Pipeline

•  Software handlers need restartable exception on TLB fault
•  Handling a TLB miss needs a hardware or software mechanism to refill TLB
•  Need mechanisms to cope with the additional latency of a TLB:

–  slow down the clock
–  pipeline the TLB and cache access
–  virtual address caches
–  parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

February 25, 2010 CS152, Spring 2010 25

Virtual Address Caches

•  one-step process in case of a hit (+)
•  cache needs to be flushed on a context switch unless address

space identifiers (ASIDs) included in tags (-)
•  aliasing problems due to the sharing of pages (-)
•  maintaining cache coherence (-) (see later in course)

CPU Physical
Cache

TLB Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM) Virtual
Cache

PA
TLB

Primary
Memory

February 25, 2010 CS152, Spring 2010 26

Aliasing in Virtual-Address Caches

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!

General Solution: Disallow aliases to coexist in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

February 25, 2010 CS152, Spring 2010 27

Concurrent Access to TLB & Cache

Index L is available without consulting the TLB
⇒ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

Cases: L + b = k L + b < k L + b > k

 VPN L b

TLB Direct-map Cache
2L

 blocks
2b-byte block

 PPN Page Offset

=
hit?

Data Physical Tag
Tag

VA

PA

Virtual
Index

k

February 25, 2010 CS152, Spring 2010 28

Virtual-Index Physical-Tag Caches:
Associative Organization

Is this scheme realistic?

 VPN a L = k-b b

TLB Direct-map
2L

 blocks

 PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L

 blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

February 25, 2010 CS152, Spring 2010 29

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

Can VA1 and VA2 both map to PA ?

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

February 25, 2010 CS152, Spring 2010 30

A solution via Second Level Cache

Often, a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

CPU

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory

February 25, 2010 CS152, Spring 2010 31

Anti-Aliasing Using L2: MIPS R10000

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Direct-Mapped L2

PA a1 Data

PPN

 into L2 tag

•  Suppose VA1 and VA2 both map to PA and VA1 is
already in L1, L2 (VA1 ≠ VA2)

•  After VA2 is resolved to PA, a collision will be
detected in L2.

•  VA1 will be purged from L1 and L2, and VA2 will be
loaded ⇒ no aliasing !

February 25, 2010 CS152, Spring 2010 32

Virtually-Addressed L1:
Anti-Aliasing using L2

 VPN Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual
Tag”

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

February 25, 2010 CS152, Spring 2010 33

Atlas Revisited

•  One PAR for each physical page

•  PAR’s contain the VPN’s of the pages
resident in primary memory

•  Advantage: The size is proportional to
the size of the primary memory

•  What is the disadvantage ?

VPN

PAR’s

PPN

February 25, 2010 CS152, Spring 2010 34

Hashed Page Table:
Approximating Associative Addressing

hash
Offset

Base of Table

+ PA of PTE

Primary
Memory

VPN PID PPN

Page Table
VPN d Virtual Address

VPN PID DPN

VPN PID

PID

•  Hashed Page Table is typically 2 to 3 times larger
than the number of PPN’s to reduce collision
probability

•  It can also contain DPN’s for some non-resident
pages (not common)

•  If a translation cannot be resolved in this table then
the software consults a data structure that has an
entry for every existing page

February 25, 2010 CS152, Spring 2010 35

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

