
Crypto tricks:
Proof of work, Hash chaining

CS 161: Computer Security
Prof. David Wagner

April 13, 2016

A Tangent:
How Can I Prove I Am Rich?

Math Puzzle – Proof of Work
•  Problem. To prove to Bob I’m not a spammer,

Bob wants me to do 10 seconds of computation
before I can send him an email. How can I prove
to Bob that I wasted 10 seconds of CPU time, in a
way that he can verify in milliseconds?

Math Puzzle – Proof of Work
•  Problem. To prove to Bob I’m not a spammer,

Bob wants me to do 10 seconds of computation
before I can send him an email. How can I prove
to Bob that I wasted 10 seconds of CPU time, in a
way that he can verify in milliseconds?

•  Hint: Computing 1 billion SHA256 hashes might
take 10 seconds.

Your Solution
•  Bob provides a random challenge r
•  I compute: find x such that H(r,x) starts with 33 0

bits
–  This will take me 2^33 hash computations, on average
–  Geometric: coin flip, with 1 / 2^33 chance of heads

•  Bob verifies by: checking that H(r,x) starts with 33
0 bits

•  Problem: replay attacks

Your Solution
•  Bob picks 50-bit primes p,q, sends me n = pq
•  I have to factor n, send back p and q
•  Bob can verify by multiply p*q

Solution
•  To prove that I wasted 10 seconds of CPU time, in

a way that he can verify quickly:

•  Bob sends me: r
•  I look for x such that first30bits(SHA256(x || r)) = 0
•  I send Bob: x
•  Bob can verify using a single hash.

Tamper-Evident Logging
•  We work for the police Electronic Records office.
•  To ensure that evidence can’t be questioned in

court, we want to make sure that evidence can’t be
tampered with, after it is logged with the office.

•  In other words: a police officer can log an
electronic file at any time; after it is logged, no
back-dating or after-the-fact changes to evidence
should be possible.

•  How should we do it? What crypto or data
structures could we use?

Design Problem for You
•  Idea: Each day, collect all the files (f1, f2, …, fn) that

are logged that day. Then, publish something in
the next day’s newspaper, to commit to these files.

•  Question: What should we publish?
Needs to be short, and ensure after-the-fact
changes or backdating are detectable.

•  When a file fi is exhibited into evidence in a trial,
how can judge verify it hasn’t been modified post-
facto?

Your Solution

•  Store in database: f1, .., fn
•  Publish: H(f1), H(f2), .., H(fn)
•  To verify fi : reveal fi

Your Solution

•  Store in database: f1, .., fn
•  Publish: H(H(f1), H(f2), .., H(fn))
•  To verify fi : reveal fi, H(f1), H(f2), .., H(fn)

Your Solution

•  Store in database: f1, .., fn
•  Publish: Sign(f1), Sign(f2), .., Sign(fn), signed

under judge’s key
•  To verify fi : reveal fi

Candidate Solution

•  Store in database: f1, Sign(f1), f2, Sign(f2), …,
fn, Sign(fn)

•  Publish: public key
•  To verify fi : reveal f1, Sign(fi)

•  Critique: Sysadmin can get a copy of the
private key, modify database, update the
signature, and thus modify old entries or
create new backdated entries.

Candidate Solution

•  Publish: H(f1, f2, …, fn)
•  To verify fi : reveal f1, f2, …, fn

Solution
•  Each day, collect all the files (f1, f2, …, fn) that are

logged that day. Then, publish H(f1, f2, …, fn) in the
next day’s newspaper, to commit to these files.

•  When a file fi is exhibited into evidence in a trial,
reveal f1, f2, …, fn to judge. Judge can hash them,
check that their hash was in the right day’s
newspaper, and check that fi is in the list.

Better Solution
•  Each day, collect all the files (f1, f2, …, fn) that are

logged that day. Let f0 be the previous day’s hash.
Publish H(f0, f1, f2, …, fn) in the next day’s
newspaper, to commit to these files.

•  Note that exhibiting file fi into evidence still requires
revealing entire list of other files (f1, f2, …, fn) that
were logged that day. Can you think of any way to
avoid that?

Tamper-evident Audit Logs
•  X1 = H(X0, “opened vault”)
•  X2 = H(X1, “disabled alarm”)
•  X3 = H(X2, “closed alarm”)
•  X4 = H(X3, “front door locked”)
•  X5 = H(X4, “closed vault”)

•  Publishing any Xi commits to all prior log entries.

Take-away
•  Using hash chaining, we can provide tamper-

evident audit logs that let us detect after-the-fact
modifications and backdated entries.

Bitcoin

CS 161: Computer Security
Prof. David Wagner

April 13, 2016

Distributed Logging
•  Let’s do distributed peer-to-peer logging of public

data. We have n computers; they all know each
others’ public keys. Any computer can broadcast to
all others (instantaneously, reliably). Any computer
should be able to append a signed entry to the log,
and to verify integrity of any previous log entry.

•  Security goal: Malicious computers should not be
able to back-date entries or modify past log entries.
Assume ≤ 3 computers are malicious.

•  Problem 1. Describe a protocol for this. What does
Alice do to append an entry? What do other
computers need to do?

Your Solution
•  To append log entry e:
•  Other computers should:

Distributed Logging
•  Problem 2. Let’s generalize. Suppose m of the n

computers are malicious. If we make the obvious
change to your protocol, for which m can it be
made secure?

•  (a): for all m < n.
•  (b): for all m < n/2.
•  (c): for all m < n/3.
•  (d): for all m < √n.
•  (e): for all m < O(lg n).

Distributed Logging
•  Problem 2. Let’s generalize. Suppose m of the n

computers are malicious. If we make the obvious
change to your protocol, for which m can it be
made secure?

•  (a): for all m < n.
•  (b): for all m < n/2.
•  (c): for all m < n/3.
•  (d): for all m < √n.
•  (e): for all m < O(lg n).

Distributed Money
•  Donna gets the brilliant idea to use this log to store

financial transactions. Each person’s initial
balance is public.

•  To transfer $10 from Alice to Bob, Alice appends a
signed log entry saying “I transfer $10 to Bob” and
broadcasts it. Everyone can compute the updated
balance for Alice and Bob.

•  Problem 3. What are some ways that a malicious
actor might try to attack this scheme? Is this a
good scheme?

Your Answers
•  Replay
•  Denial of service attacks
•  Broadcast doesn’t scale
•  TOCTTOU vulnerability

Problems with This Scheme
•  Initial balance is arbitrary
•  Broadcasting is expensive and doesn’t scale
•  A conspiracy of n/2 malicious computers can fork

the audit log and steal all the money
•  Sybil attacks: Anyone can set up millions of servers

and thus have a 50% majority

Bitcoin
•  Public, distributed, peer-to-peer audit log of all

transactions.
•  To append an entry to the log, the latest value

must hash to something whose first 30 bits are
zero; then broadcast it to everyone.

•  Anyone who appends an entry to the log is given a
small reward, in new money (a fraction of a
Bitcoin).

