
Detecting Attacks, cont.

CS 161: Computer Security
Prof. David Wagner

April 8, 2016

Special request: Please spread out!
Pair up. Each pair, sit far away from anyone else.
If you’re just arriving, sit next to someone who is
alone.

Specification-Based Detection
•  Idea: don’t learn what’s normal; specify what’s

allowed
•  FooCorp example: decide that all URL parameters

sent to foocorp.com servers must have at most
one ‘/’ in them
–  Flag any arriving param with > 1 slash as an attack

•  What’s nice about this approach?
–  Can detect novel attacks
–  Can have low false positives

•  If FooCorp audits its web pages to make sure they comply

•  What’s problematic about this approach?
–  Expensive: lots of labor to derive specifications

•  And keep them up to date as things change (“churn”)

Styles of Detection: Behavioral
•  Idea: don’t look for attacks, look for evidence of compromise

•  FooCorp example: inspect all output web traffic for any lines
that match a passwd file

•  Example for monitoring user shell keystrokes:
 unset	HISTFILE

•  Example for catching code injection: look at sequences of
system calls, flag any that prior analysis of a given program
shows it can’t generate
–  E.g., observe process executing read(), open(), write(), fork(),

exec() …
–  … but there’s no code path in the (original) program that calls those

in exactly that order!

Behavioral-Based Detection
•  What’s nice about this approach?

–  Can detect a wide range of novel attacks
–  Can have low false positives

•  Depending on degree to which behavior is distinctive
•  E.g., for system call profiling: no false positives!

–  Can be cheap to implement
•  E.g., system call profiling can be mechanized

•  What’s problematic about this approach?
–  Post facto detection: discovers that you definitely have a

problem, w/ no opportunity to prevent it
–  Brittle: for some behaviors, attacker can maybe avoid it

•  Easy enough to not type “unset	HISTFILE”
•  How could they evade system call profiling?

–  Mimicry: adapt injected code to comply w/ allowed call sequences

Inside a Modern HIDS (“AV”)
•  URL/Web access blocking:

–  Prevent users from going to known bad locations

•  Protocol scanning of network traffic (esp. HTTP)
–  Detect & block known attacks
–  Detect & block known malware communication

•  Payload scanning
–  Detect & block known malware

•  (Auto-update of signatures for these)
•  Cloud queries regarding reputation

–  Who else has run this executable and with what results?
–  What’s known about the remote host / domain / URL?

Inside a Modern Antivirus
•  Sandbox execution

–  Run selected executables in constrained/monitored
environment

–  Analyze:
•  System calls
•  Changes to files / registry
•  Self-modifying code (polymorphism/metamorphism)

•  File scanning
–  Look for malware that installs itself on disk

•  Memory scanning
–  Look for malware that never appears on disk

•  Runtime analysis
–  Apply heuristics/signatures to execution behavior

Summary of Evasion Issues

•  Evasions arise from uncertainty/ambiguity (or
incompleteness/inconsistency) because detector must infer
behavior/processing it can’t directly observe
–  A general problem any time detection separate from potential target

•  One general strategy: impose canonical form (“normalize”)
–  E.g., rewrite URLs to expand/remove hex escapes
–  E.g., enforce blog comments to only have certain HTML tags

•  (Another strategy: analyze all possible interpretations rather
than assuming one
–  E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …)

•  Another strategy: fix the basic observation problem
–  E.g., monitor directly at end systems

Key Concepts for Detection
•  Signature-based vs anomaly detection

(blacklisting vs whitelisting)
•  Evasion attacks
•  Evaluation metrics: False positive rate, false

negative rate
•  Base rate problem

Securing DNS:
DNSSEC

CS 161: Computer Security
Prof. David Wagner

April 11, 2013 Special request: Please spread out!
Pair up. Each pair, sit far away from anyone else.
If you’re just arriving, sit next to someone who is
alone.

Securing DNS Lookups

•  Topic for today:
How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

•  But first, a diversion…

Active learning

•  Today: Active learning + peer instruction
–  I’m going to ask you to work out how to secure

DNS, on your own.
–  I’ll give you a series of problems. I want you to

break into groups of two, decide what you think a
solution might be, then report back to the class.

–  I will circulate. Ask me for help!
– Research suggests this might be more effective

than lecturing. Let’s give it a try!
•  I welcome your feedback on whether it helps

you learn.

Outsourcing Data Lookups

•  Problem 1. Berkeley has a database of all
its alumni, D = {d1, d2, …, dn}, replicated
across many mirror sites. Given a name x,
any client should be able to query any
mirror and learn whether x ∈ D. We don’t
trust the mirrors, so if answer to query is
“yes” (i.e., if x ∈ D), client should receive a
proof that it can verify. Don’t worry about
proofs if answer is “no”. Make performance
as good as possible.

Solutions

Give to the mirror:
•  Sign(Dave), Sign(Eve), ..

•  To answer a query like “Dave”,
response = Sign(Dave)

Solutions

Give to the mirror:
•  Signatures: d1,Sign(d1),…,dn,Sign(dn)

Outsourcing Data Lookups

•  Question 2. Suppose we use your solution,
with client connecting to mirror via HTTP –
but there is a man-in-the-middle (on-path
attacker). What can attacker do, without
being detected?

A. Can spoof both “yes” (x ∈ D) and
 “no” (x ∉ D) responses.
B. Can spoof “yes”, but can’t spoof “no”.
C. Can spoof “no”, but can’t spoof “yes”.
D. Can’t spoof either kind of response.

Authenticating “Yes” and “No”

•  Problem 3. Same as Problem 1, except
now, if answer is “no” (i.e., x ∉ D), client
should receive a proof that it can verify.

Authenticating “Yes” and “No”

•  Problem 3. Same as Problem 1, except
now, if answer is “no” (i.e., x ∉ D), client
should receive a proof that it can verify.

Hint: Organize the data in some CS 61B
data structure, then….

Authenticating “Yes” and “No”

•  Problem 3. Same as Problem 1, except
now, if answer is “no” (i.e., x ∉ D), client
should receive a proof that it can verify.

Hint: Organize the elements as a binary
tree or hash table, then….

Solutions

Say D = {Alice, Bob, Jim, Xavier}.
Give to mirror:
•  Sign(C, “no”), Sign(D, no), Sign(E, no), ..,

Sign(Aa, no), Sign(Ab, no), Sign(Ac, no)
•  Hashtable, plus Sign(i || contents of bucket

i) for each I
•  Sign(first, Alice), Sign(Alice, Bob),

Sign(Bob, Jim), Sign(Jim, Xavier),
Sign(Xavier, last)

To answer query “Doug”:
•  _

Solutions

Say D = {Alice, Bob, Jim, Xavier}.
Give to mirror:
•  Sign(1, Alice), Sign(2, Bob), Sign(3, Jim),

Sign(4, Xavier)
•  Sign(Alice,Bob), Sign(Bob, Jim),

Sign(Jim,Xavier)
To answer query “Doug”:
•  Doug -> no, Bob, Jim, Sign(2, Bob),

Sign(3, Jim); or Doug -> no, Sign(Bob, Jim)

Side note: CS 61B again…

If there is a data structure that can answer
queries in time T(n), then there is a way to
cache the data structure and have cahces
provide proofs of size O(T(n)).

Why?

DNS

•  Problem 4. Now Berkeley wants to protect
its DNS records; how could it do it? What
would be the advantages and
disadvantages of your solution?

DNSSEC

•  Guess what – you just invented DNSSEC!

•  Sign all DNS records. Signatures let you
verify answer to DNS query, without having
to trust the network or resolvers involved.

