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Reminder: 
HTTPS Connection (SSL / TLS)
• Browser (client) connects via TCP to 

Amazon’s HTTPS server

• Client picks 256-bit random number RB, 

sends over list of crypto protocols it 
supports


• Server picks 256-bit random number RS, 
selects protocols to use for this session


• Server sends over its certificate

• (all of this is in the clear)


• Client now validates cert
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Hello.  My rnd # = RB.  I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or  …
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Here’s my cert

~2-3 K
B of d

ata



Computer Science 161 Spring 2019 Popa & Weaver

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster Secret” PS

• Browser sends PS encrypted using Amazon’s public RSA 

key KAmazon

• Using PS, RB, and RS, browser & server derive symm. 

cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction


• Browser & server exchange MACs computed over entire 
dialog so far


• If good MAC, Browser displays

• All subsequent communication encrypted w/ symmetric 

cipher (e.g., AES128) cipher keys, MACs

• Sequence #’s thwart replay attacks

�3

Browser

Here’s my cert

~2-3 K
B of d
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{PS}KAmazon

PS
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{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server



Computer Science 161 Spring 2019 Popa & Weaver

Alternative: Ephemeral Key Exchange via  
Diffie-Hellman
• For Diffie-Hellman (DHE), server generates 

random a, sends public parameters and ga mod p

• Signed with server’s private key


• Browser verifies signature

• Browser generates random b, computes PS = gab 

mod p, sends gb mod p to server

• Server also computes 

PS = gab mod p

• Remainder is as before: from PS, RB, and RS, 

browser & server derive symm. cipher keys (CB, 
CS) and MAC integrity keys (IB, IS), etc…
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Cipher Suite 
Negotiation
• Chrome's cipher-suite information

• Client sends to the server

• Server then choses which one it wants

• It should pick the common mode that both prefer based 

on order


• First is a dummy to keep servers honest

• Then its the bulk encryption only 

options

• Then key exchanges w encryption 

mode

• Description is key exchange, signature (if 

necessary), and then bulk cipher & hash
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Why Rb and Rs?

• Both Rb and Rs act to affect the keys...  Why?

• Keys = F(Rb || Rs || PS)


• Needed to prevent a replay attack

• Attacker captures the handshake from either the client or server and replays 

it...


• If the other side choses a different R the next time...

• The replay attack fails.


• But you don't need to check for reuse by the other side..

• Just make sure you don't reuse it on your side!
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And Sabotaged pRNGs...

• Let us assume the server is using DHE...

• If an attacker can know a, they have all the information needed to decrypt the traffic:

• Since PS = gab, and can see gb.


• TLS spews a lot of "random" numbers publicly as well

• Nonces in the crypto, Rs, etc...


• If the server uses a bad pRNG which is both sabotaged and doesn't have 
rollback resistance...

• Dual_EC DRBG where you know the secret used to create the generator...

• ANSI X9.31: An AES based one with a secret key...


• Attacker sees the handshake, sees subsequent PRNG calls, works backwards to 
get the secret

• Attack of the week: DUHK

• https://blog.cryptographyengineering.com/2017/10/23/attack-of-the-week-duhk/
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Forward Secrecy Modes...

• The real benefit from DHE/ECDHE "forward secret" modes

• Reminder: Forward Secrecy:  Even if the attacker later compromises the 

server's private key, the attacker can't compromise previous traffic


• It makes it far more difficult to use even after an attacker 
compromises the server's private key


• Attacker has to be a full MitM: 
Do the handshake to the client and a separate one for the server
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Theme of This Lecture In Song: 
50 Whys to Stop A Server...
• You are a bad guy...

• And you want to stop some server from 

being available


• Why?  You name it...

• Because its hard for someone to frag 

you in an online game if you "boot" him 
from the network


• Because people will pay up to stop the 
attack


• Because it conveys a political message

• Get paid for by others
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The Easy DoS on a System: 
Resource Consumption...
• Bad Dude has an account on your computer...

• And wants to disrupt your work on Project 2...


• He runs this simple program:

• while(1):

• Write random junk to random files

• (uses disk space, thrashes the disk)


• Allocate a bunch of RAM and write to it

• (uses memory)


• fork()

• (creates more processes to run)


• Only defense is some form of quota or limits: 
The system itself must enforce some isolation
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The Network DOS
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Or, another visual explanation...

• https://twitter.com/kokonoe0825/status/789536739887112192
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DoS & Networks

• How could you DoS a target’s Internet access?

• Send a zillion packets at them

• Internet lacks isolation between traffic of different users!


• What resources does attacker need to pull this off?

• At least as much sending capacity (bandwidth) as the bottleneck link of the 

target’s Internet connection

• Attacker sends maximum-sized packets

• Or: overwhelm the rate at which the bottleneck router can process packets

• Attacker sends minimum-sized packets!

•  (in order to maximize the packet arrival rate)
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Defending Against Network DoS

• Suppose an attacker has access to a beefy system with 
high-speed Internet access (a “big pipe”).


• They pump out packets towards the target at a very high 
rate.


• What might the target do to defend against the onslaught?

• Install a network filter to discard any packets that arrive with attacker’s IP 

address as their source

• E.g., drop * 66.31.33.7:* -> *:*

• Or it can leverage any other pattern in the flooding traffic that’s not in benign traffic

• Attacker’s IP address = means of identifying misbehaving user
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Filtering Sounds Pretty Easy …

• … but DoS filters can be easily evaded:

• Make traffic appear as though it’s from many hosts

• Spoof the source address so it can’t be used to filter

• Just pick a random 32-bit number of each packet sent


• How does a defender filter this?

• They don’t!

• Best they can hope for is that operators around the world implement anti-spoofing mechanisms 

(today about 75% do)


• Use many hosts to send traffic rather than just one

• Distributed Denial-of-Service = DDoS (“dee-doss”)

• Requires defender to install complex filters

• How many hosts is “enough” for the attacker?

• Today they are very cheap to acquire … :-(
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It’s Not A “Level Playing Field”

• When defending resources from exhaustion, need to 
beware of asymmetries, where attackers can consume 
victim resources with little comparable effort


• Makes DoS easier to launch

• Defense costs much more than attack


• Particularly dangerous form of asymmetry: amplification

• Attacker leverages system’s own structure to pump up the load they induce 

on a resource
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Amplification

• Example of amplification: DNS lookups

• Reply is generally much bigger than request

• Since it includes a copy of the reply, plus answers etc.


•  Attacker spoofs DNS request to a patsy DNS 
 server, seemingly from the target


• Small attacker packet yields large flooding packet

• Doesn’t increase # of packets, but total volume


• Note #1: these examples involve blind spoofing

• So for network-layer flooding, generally only works for UDP-based protocols (can’t 

establish a TCP connection)


• Note #2: victim doesn’t see spoofed source addresses

• Addresses are those of actual intermediary systems
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Botnets

• If an attacker can control a lot of systems

• They gain a huge amount of bandwidth

• Modern DOS attacks approach 1 Terabit-per-second with direct connections


• And it becomes very hard to filter them out

• How do you specify 1M machines you want to ignore?


• You control these "bots" in a "botnet"

• So you can issue commands that cause all these systems to do what you want


• This is what took down dyn DNS (and with it Twitter, Reddit, etc...) 
two years ago:  A botnet composed primarily of compromised 
cameras and DVRs:

• The Miraj botnet
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Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

–Goal: agree on initial sequence numbers

�19

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state 
associated with 
connection here 
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack
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Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

• Goal: agree on initial sequence numbers


• So a single SYN from an attacker suffices to force the server to spend 
some memory
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Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state 
associated with 
connection here 
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack
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TCP SYN Flooding

• Attacker targets memory rather than network capacity

• Every (unique) SYN that the attacker sends burdens the target

• What should target do when it has no more memory for a new 

connection?

• No good answer!

• Refuse new connection?

• Legit new users can’t access service

• Evict old connections to make room?

• Legit old users get kicked off
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TCP SYN Flooding Defenses

• How can the target defend itself? 

• Approach #1: make sure they have tons of memory!

• How much is enough?

• Depends on resources attacker can bring to bear (threat model), which might 

be hard to know


• Back of the envelope: 

• If we need to hold 10kB for 1 minute: to exhaust 1GB, an attacker needs...

• 100k packets/minute, or a bit more than 1,000 packets per second
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TCP SYN Flooding Defenses

• Approach #2: identify bad actors & refuse their connections

• Hard because only way to identify them is based on IP address

• We can’t for example require them to send a password because doing so requires we 

have an established connection!

• For a public Internet service, who knows which addresses customers might 

come from?

• Plus: attacker can spoof addresses since they don’t need to complete TCP 

3-way handshake 


• Approach #3: don’t keep state!  (“SYN cookies”; only works 
for spoofed SYN flooding)
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SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send 
it to the client …


• Client needs to return the state in order to established connection 

�24

Server only saves 
state here

Do not save state 
here; give to client



Computer Science 161 Spring 2019 Popa & Weaver

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send 
it to the client …


• Client needs to return the state in order to established connection 
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Server only saves 
state here

Do not save state 
here; give to client

Problem: the world isn’t so ideal! 

TCP doesn’t include an easy way to 
add a new <State> field like this.


Is there any way to get the same 
functionality without having to 
change TCP clients?
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Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection state entirely within  
SYN-ACK’s sequence # y

• y = encoding of necessary state, using server secret


• When ACK of SYN-ACK arrives, server only creates state if value of y from it agrees w/ 
secret

�26

Server only creates 
state here

Do not create 
state here

Instead, encode it here
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SYN Cookies: Discussion

• Illustrates general strategy: rather than holding state, encode it so that 
it is returned when needed


• For SYN cookies, attacker must complete 
3-way handshake in order to burden server

• Can’t use spoofed source addresses


• Note #1: strategy requires that you have enough bits to encode all the 
state

• (This is just barely the case for SYN cookies)

• You can think of a SYN cookie as a truncated MAC of the sender IP/port/sequence


• Note #2: if it’s expensive to generate or check the cookie, then it’s not 
a win
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Application-Layer DoS

• Rather than exhausting network or memory resources, 
attacker can overwhelm a service’s processing capacity


• There are many ways to do so, often at little expense to 
attacker compared to target (asymmetry)
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Algorithmic complexity attacks

• Attacker can try to trigger worst-case complexity of algorithms / data 
structures


• Example: You have a hash table. 
Expected time: O(1).  Worst-case: O(n).


• Attacker picks inputs that cause hash collisions. 
Time per lookup: O(n). 
Total time to do n operations: O(n^2).


• Solution?  Use algorithms with good worst-case running time.

• E.g., using b bits of HMAC ensures that P[hk(x)=hk(y)] = .5b, so hash collisions will be rare.

• If the attacker doesn't know the key that is
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Application-Layer DoS

• Defenses against such attacks?

• Approach #1: Only let legit users issue expensive requests

• Relies on being able to identify/authenticate them

• Note: that this itself might be expensive!


• Approach #2: Force legit users to “burn” cash

• This is what a captcha really is!


• Approach #3: massive over-provisioning ($$$)

• Or pay for someone else who massively over provisions for everyone: 

A content delivery network
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DoS Defense in General Terms

• Defending against program flaws requires:

• Careful design and coding/testing/review

• Consideration of behavior of defense mechanisms

• E.g. buffer overflow detector that when triggered halts execution to prevent code injection ⇒ 

denial-of-service


• Defending resources from exhaustion can be really hard.  
Requires:

• Isolation and scheduling mechanisms

• Keep adversary’s consumption from affecting others


• Reliable identification of different users

• Or just a ton of $$$$
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Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against external attack?

• Key Observation:

• The more network services your machines run, the greater the risk


• Due to larger attack surface


• One approach: on each system, turn off unnecessary network services

• But you have to know all the services that are running

• And sometimes some trusted remote users still require access


• Plus key question of scaling

• What happens when you have to secure 100s/1000s of systems?

• Which may have different OSs, hardware & users …

• Which may in fact not all even be identified …
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Taming Management Complexity

• Possibly more scalable defense: Reduce risk by blocking in 
the network outsiders from having unwanted access your 
network services


• Interpose a firewall the traffic to/from the outside must traverse

• Chokepoint can cover thousands of hosts

• Where in everyday experience do we see such chokepoints?

�34
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Selecting a Security Policy

• Firewall enforces an (access control) policy:

• Who is allowed to talk to whom, accessing what service?


• Distinguish between inbound & outbound connections

• Inbound: attempts by external users to connect to services on internal machines

• Outbound: internal users to external services

• Why?  Because fits with a common threat model.  There are thousands of internal users 

(and we’ve vetted them).  There are billions of outsiders.


• Conceptually simple access control policy:

• Permit inside users to connect to any service

• External users restricted: 

• Permit connections to services meant to be externally visible

• Deny connections to services not meant for external access
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How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external access to 
services


• Shut them off as problems recognized


• Default Deny: start off permitting just a few known, well-
secured services


• Add more when users complain (and mgt. approves)


• Pros & Cons?

• Flexibility vs. conservative design

• Flaws in Default Deny get noticed more quickly / less painfully

�36
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A Dumb Policy: 
Deny All Inbound connections...
• The simplest packet filters are stateless

• They examine only individual packets to make a decision


• But even the simplest policy can be hard to implement

• Deny All Inbound is the default policy on your home connection


• Allow:

• Any outbound packet

• Any inbound packet that is a reply...  OOPS


• We can fake it for TCP with some ugly hacks

• Allow all outbound TCP

• Allow all inbound TCP that does not have both the SYN flag set and the ACK flag not set

• May still allow an attacker to play some interesting games


• We can't even fake this for UDP!
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Stateful Packet Filter

• Stateful packet filter is a router that checks each packet 
against security rules and decides to forward or drop it


• Firewall keeps track of all connections (inbound/outbound)

• Each rule specifies which connections are allowed/denied 

(access control policy)

• A packet is forwarded if it is part of an allowed connection

�38
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Example Rule

• allow tcp connection 4.5.5.4:* -> 3.1.1.2:80 
• Firewall should permit TCP connection that’s:

• Initiated by host with Internet address 4.5.5.4 and

• Connecting to port 80 of host with IP address 3.1.1.2


• Firewall should permit any packet associated with 
this connection


• Thus, firewall keeps a table of (allowed) active connections.  When firewall 
sees a packet, it checks whether it is part of one of those active connections. 
If yes, forward it; if no, check to see if rule should create a new allowed 
connection
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Example Rule

• allow tcp connection *:*/int -> 3.1.1.2:80/ext 
• Firewall should permit TCP connection that’s:

• Initiated by host with any internal host and

• Connecting to port 80 of host with IP address 3.1.1.2 on external Internet


• Firewall should permit any packet associated with 
this connection


• The /int indicates the network interface.

• This is "Allow all outgoing web requests"
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Example Ruleset

• allow tcp connection *:*/int -> *:*/ext 

• allow tcp connection *:*/ext -> 1.2.2.3:80/int 
• Firewall should permit outbound TCP connections 

(i.e., those that are initiated by internal hosts)

• Firewall should permit inbound TCP connection to our public webserver at IP address 

1.2.2.3
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Stateful Filtering

• Suppose you want to allow inbound connection to a FTP 
server, but block any attempts to login as “root”.  How 
would you build a stateful packet filter to do that? In 
particular, what state would it keep, for each connection?
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State Kept

• No state – just drop any packet with root in them


• Is it a FTP connection?

• Where in FTP state (e.g. command, what command)

• Src ip addr, dst ip addr, src port, dst port

• Inbound/outbound connection

• Keep piece of login command until it’s completed – only 

first 5 bytes of username
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Beware!

• Sender might be malicious and trying to sneak through 
firewall


• “root” might span packet boundaries

�44
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Beware!

• Packets might be re-ordered

�45
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Firewall
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Beware!
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Other Kinds of Firewalls

• Application-level firewall

– Firewall acts as a proxy.  TCP connection from client to firewall, which 

then makes a second TCP connection from firewall to server.

– Only modest benefits over stateful packet filter.
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Secure External Access to Inside Machines

• Often need to provide secure remote access to a network protected by a firewall

• Remote access, telecommuting, branch offices, …


• Create secure channel (Virtual Private Network, or VPN) to tunnel traffic from 
outside host/network to inside network

• Provides Authentication, Confidentiality, Integrity

• However, also raises perimeter issues

•     (Try it yourself at http://www.net.berkeley.edu/vpn/)
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Why Have Firewalls Been Successful?

• Central control – easy administration and update

• Single point of control: update one config to change security policies

• Potentially allows rapid response


• Easy to deploy – transparent to end users

• Easy incremental/total deployment to protect 1000’s


• Addresses an important problem

• Security vulnerabilities in network services are rampant

• Easier to use firewall than to directly secure code …
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Firewall Disadvantages

• Functionality loss – less connectivity, less risk

• May reduce network’s usefulness

• Some applications don’t work with firewalls

• Two peer-to-peer users behind different firewalls


• The malicious insider problem

• Assume insiders are trusted

• Malicious insider (or anyone gaining control of internal machine) can wreak havoc


• Firewalls establish a security perimeter

• Like Eskimo Pies: “hard crunchy exterior, soft creamy center”

• Threat from travelers with laptops, cell phones, …
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Pivoting...

• Thus the goal of the attacker is to "pivot" through the 
system

• Start running on a single victim system

• EG, using a channel that goes from the victim to the attacker's server over port 443: an 

encrypted web connection


• From there, you can now exploit internal systems directly

• Bypassing the primary firewall


• That is the problem: A single breach of the perimeter by an 
attacker and you can no longer make any assertions about 
subsequent internal state
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Takeaways on Firewalls

• Firewalls: Reference monitors and access control all over 
again, but at the network level


• Attack surface reduction

• Centralized control
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