Network **Security 6: DNSSEC**

TOP DEFINITION

Infosec

A profession that turns normal people into whiskey drinking, swearing, paranoid, disheartened curmudgeons with no hope for the future of computers or humanity.

Hi, I work in Infosec. Please pass the whiskey. No, I won't fix your computer.

@joXn@weirder.earth @joXn · 14 Sep 2018 Keeping our workplace safe!

It has been - 3 2 7 6 8 days since the last integer overflow incident.

 \square

 \mathcal{O} 1 8 ♡ 21

Cl SwiftOnSecurity Retweeted

Not like the rapper @naztynaz · Mar 12 \sim DID YALL KNOW IF YOU RECORD AUDIO AND TAKE NOTES USING ONENOTE, YOU CAN GO BACK TO A LINE IN YOUR NOTES AND HEAR WHAT THE PROFESSOR WAS SAYING AT THE TIME YOU TYPED THOSE NOTES. IT'S ALL SYNCED

I wish I knew this as a freshman

A Warning: I'm Giving *Unfiltered* DNSSEC

Computer Science 161 Spring 2019

- Why?
 - Because it is a well thought through cryptographic protocol designed to solve a real world data integrity problem
 - It is a real world PKI with some very unique trust properties:
 - A constrained *path of trust* along *established business relationships*.
 - It is important to appreciate the real world of what it takes to build a secure system
 - I've worked with it for far too much for my own sanity...
 - And I'm a cruel bastard

Hypothetical: Securing DNS Using SSL/TLS

But This Doesn't Work

- Popa & Weaver
- TLS provides channel integrity, but we need data integrity
- TLS in this scheme is not end to end
 - In particular, the recursive resolver is a known adversary:
 - "NXDOMAIN wildcarding": a "helpful" page when you give a typo
 - Malicious MitM of targeted schemes for profit
- TLS in this scheme is *painfully slow*:
 - DNS lookups are 1 RTT, this is 3 RTTs!
- And *confidentiality* is of little benefit:
 - We use DNS to contact hosts: Keeping the DNS secret doesn't actually disguise who you talk to!

DNS security: If the Attacker sees the traffic...

Computer Science 161 Spring 2019

- All bets are off:
 - DNS offers NO protection against an on-path or in-path adversary
 - Attacker sees the request, sends the reply, and the reply is accepted!
- The recursive resolver is the most common in-path adversary!
 - It is implicitly trusted
 - Yet often abuses the trust
- And this scheme keeps the resolver as the in-path adversary

So Instead Let's Make DNS a PKI and records certificates

- www.berkeley.edu is already trusting the DNS authorities for berkeley.edu, .edu, and . (the root)
- Since www.berkeley.edu is in bailiwick for all these servers and you end up having to contact all of them to get an answer.
- So let's start signing things:
 - . will sign .edu's key
 - .edu will sign Berkeley's key
 - Berkeley's key will sign the record
- DNSSEC: DNS Security Extensions
 - A heirarchical, distributed trust system to validate the mappings of names to values

Enter DNSSEC (DNS Security Extensions)

- Popa & Weaver
- An extension to the DNS protocol to enable cryptographic authentication of DNS records
 - Designed to prove the value of an answer, or that there is no answer!
 - A restricted path of trust
 - Unlike the HTTPS CA (Certificate Authority) system where your browser trusts every CA to speak for every site
- With backwards compatibility:
 - Authority servers don't need to support DNSSEC
 - But clients should know that the domain is not secured
 - Recursive and stub resolvers that don't support DNSSEC must not receive DNSSEC information

Reminder: DNS Message Structure

Computer Science 161 Spring 2019

- DNS messages:
 - A fixed header: Transaction ID, flags, etc...
 - 1 question: Asking for a name and type
 - 0-N answers: The set of answers
 - 0-N authority: ("glue records"): Information about the authority servers and/or ownership of the domain
 - 0-N additional: ("glue records"): Information about the authority server's IP addresses
 - Glue records are needed for the resolution process but aren't the answer to the question

Reminder: DNS Resource Records and RRSETs

Computer Science 161 Spring 2019

- DNS records (Resource Records) can be one of various types
 - Name TYPE TTL Value
- Groups of records of the same name and type form RRSETs:
 - E.g. all the nameservers for a given domain.
 - All the records in the RRSET have the same name, type, and TTL

The First New Type: OPT

Computer Science 161 Spring 2019

- DNS contains some old limits:
 - Only 8 total flag bits, and messages are limited to 512B
- DNSSEC messages are much bigger
- DNSSEC needs two additional flags
 - DO: Want DNSSEC information
 - CD: Don't check DNSSEC information

EDNS0 (Extension Mechanisms for DNS) adds the OPT resource record

- Sent in the *request* and reply in the additional section
 - Uses CLASS field to specify how large a UDP reply can be handled
 - Uses TTL field to add 16 flag bits
 - Only flag bit currently used is DO
- Used to signal to the authority that the client desires DNSSEC information

EDNS0 in action

• A query using dig +bufsize=1024 uses EDNS0

nweaver% dig +norecurse +bufsize=1024 slashdot.org @a.root-servers.net

```
; <<>> DiG 9.8.3-P1 <<>> +bufsize=1024 slashdot.org @a.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13419
;; flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 13
:: OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;slashdot.org.
                                         Α
                                 IN
;; AUTHORITY SECTION:
                        172800
                                                 a0.org.afilias-nst.info.
                                 IN
                                         NS
org.
. . .
```

The second new type, a certificate: **RRSIG**

- A signature over an RRSET (not just a single answer): Multiple fields
 - Type: The DNS type which this is the RRSIG for
 - Algorithm: IANA assigned identifier telling the encryption algorithm
 - Labels: Number of segments in the DNS name
 - Original TTL: The TTL for the record delivered by the authority
 - Signature Expiration
 - Signature Inception
 - Both in seconds since January 1, 1970
 - Key tag: What key was used (roughly. Its a checksum on the key bits)
 - Signer's name
 - Signature

So an RRSIG in action							
(The NS entries for isc.org .)							
 Type of the record Algorithm #5: RS 2 labels in the na 7200s initial TTL nweaver% dig +dnssec 	d its an R A/SHA-1 me NS isc.or	RSIG foi	r • • •	Valid 2013-04-15-23:32:55 to 2013-05-15-23:32:53 Key tag 50012 Key belongs to isc.org. And lots of cryptogarbage			
;; ANSWER SECTION: isc.org.	4282	IN	NS	ns.isc.afilias-nst.info.			
isc.org.	4282	IN IN	NS	ord.sns-pb.isc.org.			
<pre>isc.org. isc.org. 20130415233253 50012</pre>	4282 4282 isc.org.	IN IN HUXmb89g	NS RRSIG J <mark>B4pVehWR</mark> 0	ams.sns-pb.isc.org. NS 5 2 7200 20130515233253 cuSkJg020gw2d8QMhTrcu1ZD7nKomXHQFupX15vT			

iq5VUREGBQtnT7FEdPEJlCiJeogbAmqt3F1V5kBfdxZLe/EzYZgvSGWq sy/VHI5d+t6/

EiuCjM01UXCH1+L0YAqiHox5gsWMzRW2kvjZXhRHE2+U i1Q=

How Do We Know What Key To Use Part 1: **DNSKEY**

Computer Science 161 Spring 2019

- The DNSKEY record stores key information
 - 16 bits of flags
 - Protocol identifier (always 3)
 - Algorithm identifier
 - And then the key itself
- The keys are split into multiple roles
 - The Key Signing Key (KSK) is used only to sign the DNSKEY RRSET
 - The Zone Signing Key (ZSK) is used to sign everything else
- The client has hardwired in one key for .
 - This is the root's KSK (Key Signing Key)

14

The **DNSKEY** for .

Computer Science 161 Spring 2019

- The first is the root's ZSK
- The second is the root's KSK

- The RRSIG is signed using the KSK
 - Now the client can verify that the ZSK is correct

```
nweaver% dig +norecurse +dnssec DNSKEY . @a.root-servers.net
;; ANSWER SECTION:
                        172800
                                        DNSKEY 256 3 8 AwEAAc5byZvwmHUlCQt7WSeAr3OZ2ao4x0Yj/
                                IN
3UcbtFzQ0T67N7CpYmN qFmfvXxksS1/E+mtT0axFVDjiJjtklUsyqIm9Z1WGZKU3GZqI9Sfp1Bj
Qkhi+yLa4m4y4z2N28rxWXsWHCY740PREnmUtqXRdthwABYaB2WPum3y RGxNCP1/
                        172800
                                IN
                                        DNSKEY
                                                257 3 8
AwEAAagAIK1VZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW008gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/
RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD
X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9d1zEheX7ICJBBtuA6G3LQpz
W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOY170yQdXfZ57relS
Qageu+ipAdTTJ25AsRTAoub8ONGcLmgrAmRLKBP1dfwhYB4N7knNnulg QxA+Uk1ihz0=
                                        RRSIG
                                                DNSKEY 8 0 172800 20130425235959 20130411000000
                        172800
                                IN
19036 . {Cryptographic Goop}
```

But how do we know what key to use part 2? **DS**

- Popa & Weaver
- The **DS** (Delegated Signer) record is relatively simple
 - The key tag
 - The algorithm identifier
 - The hash function used
 - The hash of the signer's name and the KSK
- The *parent* signs DS (Delegated Signer) records for the child's keys
 - So for the DS for .org is provided by the root
 - This is returned with the NS RRSET by the parent
 - And the RRSIG is signed by the parent, not the child

The DS for org.

Computer Science 161 Spring 2019

- The two DS records are for the same key
 - Just with different hash functions, SHA-256 and SHA-1
- The RRSIG is signed using the ZSK not the KSK
 - And covers both DS records

nweaver% nweaver% dig +	+norecurs	e +dnsse	ec www.is	c.org @a.root-servers.net
 ;; AUTHORITY SECTION: org.	172800	IN	NS	d0.org.afilias-nst.org.
org	172800	TN	NS	a0.org.afilias-nst.info
org.	86400	IN	DS	21366 7 2
96EEB2FFD9B00CD4694E782	278B5EFDA	B0A80446	6567B69F6	34DA078F0 D90F01BA
org.	86400	IN	DS	21366 7 1 E6C1716CFB6BDC84E84CE1AB5510DAC69173B5B2
org. {Cryptographic Goop}	86400	IN	RRSIG	DS 8 1 86400 20130423000000 20130415230000 20580 .

17

Computer Science 161 Spring 2019

? A www.isc.org

Recursive Resolver

Name	Туре	Value	TTL	Valid
	DNSKEY	{cryptogoop}	N/A	Yes

Answers:

Authority Server

(the "root")

Authority: org. NS a0.afilias-nst.info org. IN DS 21366 7 2 {cryptogoop} org. IN DS 21366 7 1 {cryptogoop} org. IN RRSIG DS 8 1 86400 20130423000000 20130415230000 20580 . {cryptogoop} Additional: a0.afilias-nst.info A 199.19.56.1

Computer Science 161 Spring 2019

Popa & Weaver

- ? DNSKEY . Answers:
- . IN DNSKEY 257 3 8 {cryptogoop}
- . IN DNSKEY 256 3 8 {cryptogoop}
- . IN RRSIG DNSKEY 8 0 172800 20130425235959

20130411000000 19036 . {cryptogoop}

Authority: Additional:

******	and the second s	T
	And Street of St	L
R	All and	~
- 81	and the second se	-

User's ISP's ? DNSKEY .

Recursive Resolver

Name	Type Value T		TTL	Valid
org.	NS	a0.afilia-nst.info		No
a0.afilias-nst.info	A	199.19.56.1	86400	No
org.	DS	{cryptogoop}	86400	No
org.	DS	{cryptogoop}	86400	No
org.	RRSIG	DS {goop}	86400	No
	DNSKEY	{cryptogoop}	N/A	Yes

Computer Science 161 Spring 2019

Popa & Weaver

Recursive Resolver

Name	Туре	Value T		Valid
org.	NS	a0.afilia-nst.info		No
a0.afilias-nst.info	A	199.19.56.1	86400	No
org.	DS	{cryptogoop}	86400	No
org.	DS	{cryptogoop}	86400	No
org.	RRSIG	DS {goop} 86400		No
	DNSKEY	{cryptogoop}	172800	Yes
	RRSIG	DNSKEY {goop}	172800	Yes
	DNSKEY	{cryptogoop}	N/A	Yes

Computer Science 161 Spring 2019

User's ISP's ? A www.isc.org

Recursive Resolver

Name	Туре	Value TTI		Valid
org.	NS	a0.afilia-nst.info		No
a0.afilias-nst.info	A	199.19.56.1	86400	No
org.	DS	{cryptogoop}	86400	Yes
org.	DS	{cryptogoop}	86400	Yes
org.	RRSIG	DS {goop}	86400	Yes
	DNSKEY	{cryptogoop}	172800	Yes
	RRSIG	DNSKEY {goop}	172800	Yes
•	DNSKEY	{cryptogoop}	N/A	Yes

Answers: Authority: isc.org. NS sfba.sns-pb.isc.org. isc.org. DS {cryptogoop} isc.org. RRSIG DS {cryptogoop} Additional: sfba.sns-pb.isc.org. A 199.6.1.30

Popa & Weaver

User's ISP's Recursive Resolver

		-	-	
Name	Name Type		TTL	Valid
org.	NS	a0.afilia-nst.info		No
a0.afilias-nst.info	A	199.19.56.1	86400	No
org.	DS	{cryptogoop}	86400	Yes
org.	DS	{cryptogoop}	86400	Yes
org.	RRSIG	DS {goop}	86400	Yes
	DNSKEY	{cryptogoop}	172800	Yes
	RRSIG	DNSKEY {goop}	172800	Yes
isc.org.	org. DS {cryptogoo		86400	No
isc.org.	DS	{cryptogoop}	86400	No
isc.org.	RRSIG	RSIG DS {goop}		No
isc.org.	NS	sfbay.sns-pb.isc.org	86400	No
sfbay.sns-pb.isc.org	A	149.20.64.3	86400	No
	DNSKEY	{cryptogoop}	N/A	Yes

And so on...

Computer Science 161 Spring 2019

- The process ends up requiring:
 - Ask the root for www.isc.org and the DNSKEY for .
 - Ask org for www.isc.org and the DNSKEY for org.
 - Ask isc.org for www.isc.org and the DNSKEY for isc.org

Dig commands

- dig +dnssec +norecurse www.isc.org @a.root-servers.net
- dig +dnssec +norecurse DNSKEY . @a.root-servers.net
- dig +dnssec +norecurse www.isc.org @199.19.56.1
- dig +dnssec +norecurse DNSKEY org. @199.19.56.1
- dig +dnssec +norecurse www.isc.org @149.20.64.3
- dig +dnssec +norecurse DNSKEY isc.org. @149.20.64.3

So why such a baroque structure?

- Goal is end-to-end data *integrity*
 - Even authorized intermediaries such as the recursive resolver don't need to be trusted
 - Don't benefit (much) from confidentiality since DNS is used to contact hosts
- Signature generation can be done all offline
 - Attacker must compromise the signature generation system, not just the authority nameserver
 - Allows other authority servers to be simply mirrors
- Validation can happen at either the recursive resolver or the client
 - The DNSKEYs cache very well
 - So most subsequent lookups will not need to do these lookups
- Constrained path of trust
 - For a given name, can enumerate the trusted entities

Another reason: Latency

- The DNS community is obsessed with latency
 - Thus the refusal to simply switch to TCP for all DNS traffic
- A recursive resolver may
 - Automatically fetch the DNSKEY record with a parallel request
 - While waiting for a child's response, validate the parent's **DS** record
 - Generally the validation should be the same time or faster so we can do this in parallel
 - Result: Only two signature validations of latency added even on uncached requests and no additional network latency
 - One for the DNSKEY to get the ZSK
 - One for the final RRSET
- A stub resolver looking up foo.example.com:
 - In parallel fetch **DS** and **DNSKEY** for foo.example.com, example.com, .com, and the DNSKEY for .

Two additional complications

Computer Science 161 Spring 2019

Popa & Weaver

• NOERROR:

- The name exists but there is no record of that given type for that name
- For DNSSEC, prove that there is no ds record
 - Says the subdomain doesn't sign with DNSSEC

• NXDOMAIN:

- The name does not exist
- **NSEC** (Provable denial of existence), a record with just two fields
 - Next domain name
 - The next valid name in the domain
 - Valid types for this name
 - In a bitmap for efficiency

NSEC in action

Computer Science 161 Spring 2019

ame is va	alid so NO	ERROR bu	ut no answers
	ame is va	ame is valid so NO	ame is valid so NOERROR bu

- Single NSEC record for www.isc.org:
 - No names exist between www.isc.org and www-dev.isc.org
 - www.isc.org only has an A, AAAA, RRSIG, and NSEC record

nweaver% dig +dnssec TXT www.isc.org @8.8.8.8 . . ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20430 flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1 ;; ;; QUESTION SECTION: ;www.isc.org. IN TXT ;; AUTHORITY SECTION: www-dev.isc.org. A AAAA RRSIG NSEC www.isc.org. 3600 IN NSEC www.isc.org. 3600 IN RRSIG NSEC {RRSIG DATA}

The Use of **NSEC**

- Proof that a name exists but no type exists for that name
 - Critical for "This subdomain doesn't support DNSSEC": Return an NSEC record with the authority stating "There is no DS record"
- Proof that a name does not exist
 - It falls between the two **NSEC** names
 - Plus an **NSEC** saying "there is no wildcard"
- Allows trivial domain enumeration
 - Attacker just starts at the beginning and walks through the NSEC records
 - Some consider this bad...

So NSEC3

Computer Science 161 Spring 2019

- Rather than having the name, use a *hash* of the name
 - Hash Algorithm
 - Flags

```
nweaver% dig +dnssec TXT org @199.19.57.1
  AUTHORITY SECTION:
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN NSEC3 1 1
    H9Q3IMI6H6CIJ4708DK5A3HMJLEIQ0PF NS SOA RRSIG DNSKEY NSEC3PARAM
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN RRSIG NSEC3 {RRSIG}
```

- Iterations of the hash algorithm
- Salt (optional)
- The next name
- The RRTYPEs for this name
 - Otherwise acts like **NSEC**, just • in a different space

1 D399EAAB

Comments on NSEC3

- It doesn't *really* prevent enumeration
 - You get a hash-space enumeration instead, but since people chose reasonable names...
 - An attacker can just do a brute-force attack to find out what names exist and don't exist after enumerating the hash space
- The salt is mostly pointless!
 - Since the *whole* name is hashed, foo.example.com and foo.example.org will have different hashes anyway
- The only way to really prevent enumeration is to dynamically sign values
 - But that defeats the purpose of DNSSEC's offline signature generation

So what can possibly go wrong?

Computer Science 161 Spring 2019

- Screwups on the authority side...
 - Too many ways to count...
 - But comcast is keeping track of it: Follow @comcastdns on twitter
- The validator can't access DNSSEC records
- The validator can't process DNSSEC records correctly

Authority Side Screwups...

Computer Science 161 Spring 2019

- Its quite common to screw up
- Tell your registrar you support DNSSEC when you don't
 - Took down HBO Go's launch for Comcast users and those using Google Public DNS
- Rotate your key but present old signatures
- Forget that your signatures expire

And The Recursive Resolver Must Not Be Trusted!

Computer Science 161 Spring 2019

- Most deployments validate at the recursive resolver, not the client
 - Notably Google Public DNS and Comcast
- This provides very little practical security:
 - The recursive resolver has proven to be the biggest threat in DNS
 - And this doesn't protect you between the recursive resolver and your system
- But causes a lot of headaches
 - Comcast or Google invariably get blamed when a zone screws up
 - Fortunately this is getting less common...

DNSSEC transport

- A validating client must be able to fetch the DNSSEC related records
 - It may be through the recursive resolver
 - It may be by contacting arbitrary DNS servers on the Internet
- One of these two must work or the client can not validate DNSSEC
 - This acts to limit DNSSEC's real use: Signing other types such as cryptographic fingerprints (e.g. DANE)

Probe the Root To Check For DNSSEC Transport

Computer Science 161 Spring 2019

Popa & Weaver

- Can the client get DNSSEC data from the Internet?
 - Probe every root with DO for:
 - DS for .com with RRSIG
 - DNSKEY for . with RRSIG
 - NSEC for an invalid TLD with RRSIG

Serves two purposes:

- Some networks have one or more bad root mirrors
 - Notably one Chinese educational network has root mirrors for all but 3 that don't support DNSSEC
- If no information can be retrieved
 - Proxy which strips out DNSSEC information and/or can't handle DO

DNSSEC Root Transport: Results We've Seen In The Wild

Computer Science 161 Spring 2019

- Bad news at Starbucks: Hotspot gateways often proxy all DNS and can't handle DO-enabled traffic
 - And then have DNS resolvers that can't handle DNSSEC requests!
- Confirmed the Chinese educational network "Bad root mirror" problem

Implications of "No DNSSEC at Starbucks"

Computer Science 161 Spring 2019

- DNSSEC failure depends on the usage.
- For name->address bindings:
 - If the recursive resolver practices proper port randomization:
 - No problem. The same "attackers" who can manipulate your DNS could do anything they want at the proxy that's controlling your DNS traffic
 - Else:
 - Problem. Network is not secure
- For name->key bindings:
 - Unless the resolver supports it directly, you are Out of Luck
 - DNSSEC information must have an alternate channel if you want to use it to transmit keys instead of just IPs

In fact, my preferred DNSSEC policy For Client Validation

Computer Science 161 Spring 2019

Popa & Weaver

- For name->address mappings
 - Any existing APIs that don't provide DNSSEC status
 - If valid: use
 - If invalid OR no complete DNSSEC chain:
 - Begin an iterative fetch with the most precise DNSSEC-validated data
 - Use the result without question

For name->data mappings

- An API which returns DNSSEC status
- If valid: Use
- If invalid: Return DNSSEC failure status
 - Up to the application

Oh, And What If Your Registrar Is Compromised...

Computer Science 161 Spring 2019

- The *registrar* is the company where you registered your domain name
 - So if you register **foo.com**, you contract with a registrar for **.com**
 - You provide your registrar with your DS record
- So if the bad guy takes over your registrar or your account with your registrar...
 - Your DNSSEC is ¹/₄, the bad guy just replaces both the DS and NS entries with their own...
 - And now can intercept all non-encrypted traffic you receive, since they can answer for your DNS

But What About TLS?

- The bad guy can intercept all traffic going to your domain...
 - And TLS certificates like LetsEncrypt work by validating that you can put stuff on *your domain*...
- So the bad guy can also mint TLS certificates
 - So he can decrypt all the "secure" web traffic, be a Man-in-the-Middle, and then forward traffic onward!
- Some actor has been doing this for espionage in the middle east!
 - Only defense beyond securing your registrar and registration is to also use certificate pinning

And That's The Real Thing...

Computer Science 161 Spring 2019

- DNSSEC in all its *emm* glory.
- OPT records to say "I want DNSSEC"
- RRSIG records are certificates
- DNSKEY records hold public keys
- DS records hold key fingerprints
 - Used by the parent to tell the child's keys
- NSEC/NSEC3 records to prove that a name doesn't exist or there is no record of that type

41