
Web Security:
Session management

CS 161: Computer Security

Prof. Raluca Ada Popa
April 4, 2019

Some content adapted from materials by David Wagner or Dan Boneh

Announcements

• Midterm 2: Apr 9, 8pm - 10pm

• Covers up to the material this week
• Review session: April 4th from 6-8pm in Soda

306

• I’m offering extra office hours today, 5-6pm,
Soda 729

• A way of maintaining state

Cookies

Browser GET …
Server

Browser maintains cookie
jar with all cookies it
receives

http response contains

Setting/deleting cookies by server

• The first time a browser connects to a particular
web server, it has no cookies for that web server

• When the web server responds, it includes a Set-
Cookie: header that defines a cookie

• Each cookie is just a name-value pair (with some
extra metadata)

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

Server

View a cookie

In a web console (firefox, tool->web developer->web console),
type

document.cookie
to see the cookie for that site

Example Gmail cookies

The output of document.cookie in the web console
for my Gmail (redacted to remove my real SIDs):
"GMAIL_AT=mslgjadgdga3qwfqad34fwerfxacRSA;
CONSENT=YES+CH.en-GB+V9;
SID=askfjw448qufiehfixcnihfnxqkhfafkhnzk33;
APISID=4oq58tkjfexqac;
SAPISID=345qxqa;
1P_JAR=2019-04-04-06;
SIDCC=lgact3etmfxa4q3gcgemam"

Each name=value is one cookie.
document.cookie lists all cookies in scope for document

scope

Cookie scope

• When the browser connects to the same server later, it
automatically attaches the cookies in scope: header
containing the name and value, which the server can
use to connect related requests.

• Domain and path inform the browser about which sites
to send this cookie to

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)

Server

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over

HTTPS);

Cookie scope

GET …
Server

• Secure: sent over https only
• https provides secure communication using TLS

(privacy and integrity)

scope

Cookie scope

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

Server

• Expires is expiration date
• Delete cookie by setting “expires” to date in past

• HttpOnly: cookie cannot be accessed by Javascript, but
only sent by browser

Cookie scope

• Scope of cookie might not be the same as the
URL-host name of the web server setting it

The cookie policy has two parts:
1. What scopes a URL-host name web server

is allowed to set on a cookie
2. When the browser sends a cookie to a URL

What scope a server may set for a cookie

domain: any domain-suffix of URL-hostname, except TLD
example: host = “login.site.com”

Þ login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu
path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

[top-level domains,
e.g. ‘.com’]

The browser checks if the web server may set the cookie,
and if not, it will not accept the cookie.

Examples

Content I sola t ion Logic 149

Security Policy for Cookies
We discussed the semantics of HTTP cookies in Chapter 3, but that discus-
sion left out one important detail: the security rules that must be imple-
mented to protect cookies belonging to one site from being tampered with
by unrelated pages. This topic is particularly interesting because the approach
taken here predates the same-origin policy and interacts with it in a number
of unexpected ways.

Cookies are meant to be scoped to domains, and they can’t be limited
easily to just a single hostname value. The domain parameter provided with
a cookie may simply match the current hostname (such as foo.example.com),
but this will not prevent the cookie from being sent to any eventual sub-
domains, such as bar.foo.example.com. A qualified right-hand fragment of the
hostname, such as example.com, can be specified to request a broader scope,
however.

Amusingly, the original RFCs imply that Netscape engineers wanted to
allow exact host-scoped cookies, but they did not follow their own advice.
The syntax devised for this purpose was not recognized by the descendants
of Netscape Navigator (or by any other implementation for that matter). To
a limited extent, setting host-scoped cookies is possible in some browsers by
completely omitting the domain parameter, but this method will have no
effect in Internet Explorer.

Table 9-3 illustrates cookie-setting behavior in some distinctive cases.

The only other true cookie-scoping parameter is the path prefix: Any
cookie can be set with a specified path value. This instructs the browser to send
the cookie back only on requests to matching directories; a cookie scoped to
domain of example.com and path of /some/path/ will be included on a request to

http://foo.example.com/some/path/subdirectory/hello_world.txt

This mechanism can be deceptive. URL paths are not taken into account
during same-origin policy checks and, therefore, do not form a useful secu-
rity boundary. Regardless of how cookies work, JavaScript code can simply hop
between any URLs on a single host at will and inject malicious payloads into

Table 9-3: A Sample of Cookie-Setting Behaviors

Cookie set at foo.example.com,
domain parameter is:

Scope of the resulting cookie

Non–IE browsers Internet Explorer

(value omitted) foo.example.com (exact) *.foo.example.com
bar.foo.example.com Cookie not set: domain more specific than origin
foo.example.com *.foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com *.example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so,
where it will be sent to

domain

Web server at foo.example.com wants to set
cookie with domain:

Examples

Content I sola t ion Logic 149

Security Policy for Cookies
We discussed the semantics of HTTP cookies in Chapter 3, but that discus-
sion left out one important detail: the security rules that must be imple-
mented to protect cookies belonging to one site from being tampered with
by unrelated pages. This topic is particularly interesting because the approach
taken here predates the same-origin policy and interacts with it in a number
of unexpected ways.

Cookies are meant to be scoped to domains, and they can’t be limited
easily to just a single hostname value. The domain parameter provided with
a cookie may simply match the current hostname (such as foo.example.com),
but this will not prevent the cookie from being sent to any eventual sub-
domains, such as bar.foo.example.com. A qualified right-hand fragment of the
hostname, such as example.com, can be specified to request a broader scope,
however.

Amusingly, the original RFCs imply that Netscape engineers wanted to
allow exact host-scoped cookies, but they did not follow their own advice.
The syntax devised for this purpose was not recognized by the descendants
of Netscape Navigator (or by any other implementation for that matter). To
a limited extent, setting host-scoped cookies is possible in some browsers by
completely omitting the domain parameter, but this method will have no
effect in Internet Explorer.

Table 9-3 illustrates cookie-setting behavior in some distinctive cases.

The only other true cookie-scoping parameter is the path prefix: Any
cookie can be set with a specified path value. This instructs the browser to send
the cookie back only on requests to matching directories; a cookie scoped to
domain of example.com and path of /some/path/ will be included on a request to

http://foo.example.com/some/path/subdirectory/hello_world.txt

This mechanism can be deceptive. URL paths are not taken into account
during same-origin policy checks and, therefore, do not form a useful secu-
rity boundary. Regardless of how cookies work, JavaScript code can simply hop
between any URLs on a single host at will and inject malicious payloads into

Table 9-3: A Sample of Cookie-Setting Behaviors

Cookie set at foo.example.com,
domain parameter is:

Scope of the resulting cookie

Non–IE browsers Internet Explorer

(value omitted) foo.example.com (exact) *.foo.example.com
bar.foo.example.com Cookie not set: domain more specific than origin
foo.example.com *.foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com *.example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so,
where it will be sent to

domain

Web server at foo.example.com wants to set
cookie with domain:

When browser sends cookie

Browser sends all cookies in URL scope:
• cookie-domain is domain-suffix of URL-domain, and
• cookie-path is prefix of URL-path, and
• [protocol=HTTPS if cookie is “secure”]

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

Goal: server only sees cookies in its scope

When browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Examples: Which cookie will be sent?

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/
http://login.site.com/
http://othersite.com/

cookie: userid=u2
cookie: userid=u1, userid=u2
cookie: none

Examples

http://checkout.site.com/
http://login.site.com/
https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

cookie: userid=u2
cookie: userid=u2
cookie: userid=u1; userid=u2

(arbitrary order)

Client side read/write: document.cookie

• Setting a cookie in Javascript:

document.cookie = “name=value; expires=…; ”

• Reading a cookie: alert(document.cookie)

prints string containing all cookies available for

document (based on [protocol], domain, path)

• Deleting a cookie:

document.cookie = “name=; expires= Thu, 01-Jan-

70”

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser UI

Firefox: Tools -> page info -> security -> view cookies

Cookie policy versus
same-origin policy

Cookie policy versus same-origin policy

• Consider Javascript on a page loaded from a
URL U

• If a cookie is in scope for a URL U, it can be
accessed by Javascript loaded on the page
with URL U,
unless the cookie has the httpOnly flag set.

Examples

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/
http://login.site.com/
http://othersite.com/

cookie: userid=u2
cookie: userid=u1, userid=u2
cookie: none

JS on each of these URLs can access all cookies that would be
sent for that URL if the httpOnly flag is not set

Indirectly bypassing same-origin
policy using cookie policy

• Since the cookie policy and the same-
origin policy are different, there are
corner cases when one can use cookie
policy to bypass same-origin policy

• Ideas how?

Example

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

financial.example.com

cookie jar for *.example.com

Browsers maintain a separate cookie jar per
domain group, such as one jar for
*.example.com to avoid one domain filling
up the jar and affecting another domain.
Each browser decides at what granularity to
hold group domains.

blog.example.com

Cookie domains:

Example

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

financial.example.com

cookie jar for *.example.com

blog.example.com

example.com

example.com

GET

set-cookie:

Attacker sets many cookies with
domain example.com which
overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Example

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

example.com

cookie jar for *.example.com

example.com

example.com

example.com

Attacker sets many cookies with
domain example.com which
overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Example

financial.example.com
web server

Victim user browser

example.com

cookie jar for *.example.com

example.com

example.com

example.com

GET

When Alice visits
financial.example.com, the
browser automatically
attaches the attacker’s
cookies due to cookie
policy (the scope of the
cookies is a domain suffix
of financial.example.com)

Why is this a problem?

Indirectly bypassing same-origin
policy using cookie policy

• Victim thus can login into attackers
account at financial.example.com

• This is a problem because the victim
might think its their account and might
provide sensitive information

• This bypassed same-origin policy
(indirectly) because blog.example.com
influenced financial.example.com

RFC6265

- For further details on cookies, checkout
the standard RFC6265 “HTTP State
Management Mechanism”

https://tools.ietf.org/html/rfc6265

- Browsers are expected to implement this
reference, and any differences are
browser specific

Session management

Sessions
• A sequence of requests and responses from

one browser to one (or more) sites
– Session can be long (Gmail - two weeks)

or short (banks)

– without session mgmt:

• Session management:
– Authorize user once;
– All subsequent requests are tied to user

users would have to constantly re-authenticate

Pre-history: HTTP auth

HTTP request: GET /index.html

HTTP response contains:
WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

One username and password for a group of users

HTTP auth problems
• Hardly used in commercial sites

– User cannot log out other than by closing
browser

• What if user has multiple accounts?
• What if multiple users on same computer?

– Site cannot customize password dialog

– Confusing dialog to users

– Easily spoofed

Session tokens
Browser Web Site

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /checkout
logged-in session token

check
credentials

Validate
token

Storing session tokens:

Lots of options (but none are perfect)

• Browser cookie:

Set-Cookie: SessionToken=fduhye63sfdb

• Embed in all URL links:

https://site.com/checkout?SessionToken=kh7y3b

• In a hidden form field:

<input type=“hidden” name=“sessionid”

value=“kh7y3b”>

Storing session tokens: problems
• Browser cookie:

browser sends cookie with every request,
even when it should not (CSRF)

• Embed in all URL links:
token leaks via HTTP Referer header
users might share URLs

• In a hidden form field: short sessions only

Better answer: a combination of the above (e.g.,
browser cookie with CSRF protection using form
secret tokens)

Random fact about …

“I enjoyed acting in this Verizon commercial (aired
nationally over 500 times :). ”
[https://vimeo.com/259366281]

Pieter Abbeel

https://www.ispot.tv/ad/wEXT/verizon-putting-better-outcomes-at-doctors-fingertips
https://vimeo.com/259366281

Cross Site Request Forgery

HTML Forms

• Allow a user to provide some data which gets sent with an
HTTP POST request to a server

<form action="bank.com/action.php">

First name: <input type="text" name="firstname">

Last name:<input type="text" name="lastname">

<input type="submit" value="Submit"></form>

HTTP POST request
bank.com/action.php?firstname=Alice&lastname=Smith

When filling in Alice and Smith, and clicking submit, the browser
issues

As always, the browser attaches relevant cookies

Consider the cookie stores the
session token

• Server assigns a session token to each
user after they logged in, places it in the
cookie

• The server keeps a table of username
to current session token, so when it
sees the session token it knows which
user

Session using cookies
ServerBrowser

POST/login.cgi

Set-cookie:
session toke

n

GET/POST…Cookie: session token

response

Basic picture

Attack Server

Server Victim bank.com

User Victim

establ
ish se

ssion

send
forge

d req
uest

visit server receive malicious

page

1

2

3

4 (w/ c
ookie

)

cookie for
bank.com
with session
token

What can go bad? URL contains transaction
action

• Example:
– User logs in to bank.com

• Session cookie remains in browser state

– User visits malicious site containing:
<form name=F action=http://bank.com/BillPay.php>

<input name=recipient value=badguy> …
<script> document.F.submit(); </script>

– Browser sends user auth cookie with request
• Transaction will be fulfilled

• Problem:
– cookie auth is insufficient when side effects occur

Cross Site Request Forgery (CSRF)

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

An attacker could
• add videos to a user’s "Favorites,"
• add himself to a user’s "Friend" or "Family" list,
• send arbitrary messages on the user’s behalf,
• flagged videos as inappropriate,
• automatically shared a video with a user’s contacts,

subscribed a user to a "channel" (a set of videos
published by one person or group), and

• added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

2008 CSRF
attack

Defenses

ideas?

CSRF Defenses
• CSRF token

• Referer Validation

• Others (e.g., custom HTTP Header) we won’t go
into

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

CSRF token
1. goodsite.com server wants to protect itself, so it

includes a secret token into the webpage (e.g., in
forms as a hidden field)

2. Requests to goodsite.com include the secret
3. goodsite.com server checks that the token

embedded in the webpage is the expected one;
reject request if not
Can the token be?

• 123456

• Dateofbirth

CSRF token must be hard to
guess by the attacker

● The server stores state that binds the user's CSRF
token to the user's session id

● Embeds CSRF token in every form

● On every request the server validates that the
supplied CSRF token is associated with the user's
session id

● Disadvantage is that the server needs to maintain
a large state table to validate the tokens.

How the token is used

– When the browser issues an HTTP request, it includes a
referer header that indicates which URL initiated the
request

– This information in the Referer header could be used to
distinguish between same site request and cross site
request

Other CRSF protection: Referer
Validation

Referer Validation

Referer Validation Defense

• HTTP Referer header
– Referer: http://www.facebook.com/
– Referer: http://www.attacker.com/evil.html
– Referer: [empty]

• Strict policy disallows (secure, less usable)
• Lenient policy allows (less secure, more usable)

ü
û
?

● The referer contains sensitive information that impinges
on the privacy

● The referer header reveals contents of the search query
that lead to visit a website.

● Some organizations are concerned that confidential
information about their corporate intranet might leak to
external websites via Referer header

Privacy Issues with Referer header

Referer Privacy Problems

• Referer may leak privacy-sensitive
information

http://intranet.corp.apple.com/
projects/iphone/competitors.html

• Common sources of blocking:
– Network stripping by the organization
– Network stripping by local machine
– Stripped by browser for HTTPS -> HTTP transitions
– User preference in browser

Summary: sessions and CSRF

• Cookies add state to HTTP
– Cookies are used for session management
– They are attached by the browser

automatically to HTTP requests
• CSRF attacks execute request on benign site

because cookie is sent automatically
• Defenses for CSRF:

– embed unpredicatable token and check it
later

– check referer header

