
Computer Science 161 Spring 2019 Popa & Weaver

Malcode

 1

Computer Science 161 Spring 2019 Popa & Weaver

Malware: 
Catch-All Term for "Malicious Code"
• Attacker code running on victim computer(s)

 2

Computer Science 161 Spring 2019 Popa & Weaver

What Can Malware Do?

• Pretty much anything

• Payload generally decoupled from how manages to run

• Only subject to permissions under which it runs

• Examples:

• Brag or exhort or extort (pop up a message/display)

• Trash files (just to be nasty)

• Damage hardware (!)

• Launch external activity (spam, click fraud, DoS; banking)

• Steal information (exfiltrate)

• Keylogging; screen / audio / camera capture

• Encrypt files (ransomware)

• Possibly delayed until condition occurs

• “time bomb” / “logic bomb”

 3

Computer Science 161 Spring 2019 Popa & Weaver

Malware That Automatically Propagates

• Virus = code that propagates (replicates) across systems by arranging
to have itself eventually executed, creating a new additional instance

• Generally infects by altering stored code

• Worm = code that self-propagates/replicates across systems by
arranging to have itself immediately executed (creating new addl.
instance)

• Generally infects by altering running code

• No user intervention required

• (Note: line between these isn’t always so crisp; plus some malware
incorporates both approaches)

• NO EXPERIMENTATION WITH SELF REPLICATING CODE!
 4

Computer Science 161 Spring 2019 Popa & Weaver

The Problem of Viruses

• Opportunistic = code will eventually execute

• Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions: how it propagates vs.  
what else it does when executed (payload)

• General infection strategy: 
find some code lying around, 
alter it to include the virus

• Have been around for decades …

• … resulting arms race has heavily 

influenced evolution of modern malware
 5

Computer Science 161 Spring 2019 Popa & Weaver

Propagation

• When virus runs, it looks for an opportunity to infect additional systems

• One approach: look for USB-attached thumb drive, alter any

executables it holds to include the virus

• Strategy: when drive later attached to another system & altered executable runs, it locates

and infects executables on new system’s hard drive

• Or: when user sends email w/ attachment, virus alters attachment to
add a copy of itself

• Works for attachment types that include programmability

• E.g., Word documents (macros)

• Virus can also send out such email proactively, using user’s address book + enticing subject

(“I Love You”)

 6

Computer Science 161 Spring 2019 Popa & Weaver

 7

Original Program Instructions
Entry point

Virus Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

Virus

2. JMP

3. JMP

Original program
instructions can be:
• Application the

user runs
• Run-time library /

routines resident
in memory

• Disk blocks used
to boot OS

• Autorun file on
USB device

• …
Other variants are
possible; whatever
manages to get the
virus code executed

Computer Science 161 Spring 2019 Popa & Weaver

Detecting Viruses

• Signature-based detection

• Look for bytes corresponding to injected virus code

• High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will be trying to infect many other systems

• Can protect those other systems by installing recognizer for V

• Drove development of multi-billion $$ AV industry 
(AV = “antivirus”)

• So many endemic viruses that detecting well-known ones becomes a “checklist item” for security

audits

• Using signature-based detection also has de facto utility for (glib) marketing

• Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)

 8

Computer Science 161 Spring 2019 Popa & Weaver

 9

Computer Science 161 Spring 2019 Popa & Weaver

Virus Writer / AV Arms Race

• If you are a virus writer and your beautiful new creations don’t
get very far because each time you write one, the AV
companies quickly push out a signature for it ….

• …. What are you going to do?

• Need to keep changing your viruses …

• … or at least changing their appearance!

• How can you mechanize the creation of new instances of
your viruses …

• … so that whenever your virus propagates, what it injects as a copy of itself

looks different?
 10

Computer Science 161 Spring 2019 Popa & Weaver

Polymorphic Code

• We’ve already seen technology for creating a representation of data
apparently completely unrelated to the original: encryption!

• Idea: every time your virus propagates, it inserts a newly
encrypted copy of itself

• Clearly, encryption needs to vary

• Either by using a different key each time

• Or by including some random initial padding (like an IV)

• Note: weak (but simple/fast) crypto algorithm works fine

• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain the original
functionality

 11

Computer Science 161 Spring 2019 Popa & Weaver

 12

Virus Original Program Instructions

D
ecryptor

Main Virus Code

Key

D
ecryptor

Encrypted Glob of Bits

Key

Original Program Instructions

}

Jmp

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

⇓

… and jumps to the
decrypted code once
stored in memory

Computer Science 161 Spring 2019 Popa & Weaver

D
ecryptor

Main Virus Code

Key

D
ecryptor

Encrypted Glob of Bits

Key

Jmp

⇓

Once running, virus
uses an encryptor with
a new key to propagate

Encryptor
}

D
ecryptor

Different Encrypted Glob of Bits

Key2

⇓

Polymorphic Propagation

 13

New virus instance
bears little resemblance
to original

Computer Science 161 Spring 2019 Popa & Weaver

Arms Race: Polymorphic Code

• Given polymorphism, how might we then detect viruses?

• Idea #1: use narrow sig. that targets decryptor

• Issues?

• Less code to match against ⇒ more false positives

• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect code to see if it decrypts!

• Issues?

• Legitimate “packers” perform similar operations (decompression)

• How long do you let the new code execute?

• If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?

 14

Computer Science 161 Spring 2019 Popa & Weaver

Metamorphic Code

• Idea: every time the virus propagates, generate semantically different
version of it!

• Different semantics only at immediate level of execution; higher-level semantics remain same

• How could you do this?

• Include with the virus a code rewriter:

• Inspects its own code, generates random variant, e.g.:

• Renumber registers

• Change order of conditional code

• Reorder operations not dependent on one another

• Replace one low-level algorithm with another

• Remove some do-nothing padding and replace with different do-nothing padding (“chaff”)

• Can be very complex, legit code … if it’s never called!

 15

Computer Science 161 Spring 2019 Popa & Weaver

When ready to propagate,
virus invokes a randomized
rewriter to construct new but
semantically equivalent code
(including the rewriter)

}

!

Metamorphic Propagation

 16

Main Virus Code

R
ew

riter
}

!

(Main Virus Code)'
R

ew
riter'

(Main Virus Code)''

R
ew

riter''

Computer Science 161 Spring 2019 Popa & Weaver

Detecting Metamorphic Viruses?

• Need to analyze execution behavior

• Shift from syntax (appearance of instructions) to  

semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find behavioral signature; 
(2) AV software on end systems analyze suspect code to test for match to signature

• What countermeasures will the virus writer take?

• Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time

• Detect that execution occurs in an analyzed environment and if so behave differently

• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?

• AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle
 17

Computer Science 161 Spring 2019 Popa & Weaver

Malcode Wars and the Halting Problem...

• Cyberwars are not won by solving the halting problem... 
Cyberwars are won by making some other poor sod solve the halting
problem!!!

• In the limit, it is undecidable to know "is this code bad?"

• Modern focus is instead "is this code new?"

• Use a secure cryptographic hash (so sha-256 not md5)

• Check hash with central repository: If not seen before,  

treat binary as inherently more suspicious

• Creates a bind for attackers:

• Don't make your code *morphic:  

Known bad signature detectors find it

• Make your code *morphic:  

It always appears as new and therefore inherently suspicious
 18

Computer Science 161 Spring 2019 Popa & Weaver

Creating binds is very powerful...

• You have a detector D for some bad behavior...

• So bad-guys come up with a way of avoiding detector D

• So come up with a detection strategy for avoiding
detector D

• So to avoid this detector, the attacker must not try to avoid D

• When you can do it, it is very powerful!

 19

Computer Science 161 Spring 2019 Popa & Weaver

How Much Malware Is Out There?

• A final consideration re polymorphism and metamorphism:

• Presence can lead to mis-counting a single virus outbreak as instead

reflecting 1,000s of seemingly different viruses

• Thus take care in interpreting vendor statistics on malcode
varieties

• (Also note: public perception that huge malware populations exist is in the
vendors’ own interest)

 20

Computer Science 161 Spring 2019 Popa & Weaver

 21

Computer Science 161 Spring 2019 Popa & Weaver

Infection Cleanup

• Once malware detected on a system, how do we get rid of it?

• May require restoring/repairing many files

• This is part of what AV companies sell: per-specimen disinfection procedures

• What about if malware executed with adminstrator privileges?

• "Game over man, Game Over!"

• “Dust off and nuke the entire site from orbit. It’s the only way to be sure”

• i.e., rebuild system from original media + data backups

• Malware may include a rootkit: kernel patches to hide its
presence (its existence on disk, processes)

 22

- Aliens

Computer Science 161 Spring 2019 Popa & Weaver

Infection Cleanup, con’t

• If we have complete source code for system, we could
rebuild from that instead, couldn’t we?

• No!

• Suppose forensic analysis shows that virus introduced a

backdoor in /bin/login executable

• (Note: this threat isn’t specific to viruses; applies to any malware)

• Cleanup procedure: rebuild /bin/login from source …

 23

Computer Science 161 Spring 2019 Popa & Weaver

 24

/bin/login 
source code

Compiler

/bin/login 
executable

Regular compilation
process of building login
binary from source code

/bin/login 
source code

Compiler

/bin/login 
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

Computer Science 161 Spring 2019 Popa & Weaver

 25

No problem: first step,
rebuild the compiler so
it’s uninfected

Correct compiler 
source code

 Infected Compiler

Correct compiler 
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door …

 Infected Compiler

 Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Correct compiler 
source code

X

Computer Science 161 Spring 2019 Popa & Weaver

This Was Done!!!

• By Ken Thompson

• "Reflections on Trusting Trust"

• And now bad guys are doing it too...

• Reports of malicious actors trojaning the build environment for games

 26

Computer Science 161 Spring 2019 Popa & Weaver

More On "Rootkits"

• If you control the operating system...

• You can hide extremely well

• EG, your malcode is on disk...

• So it will persist across reboots

• But if you try to read the disk...

• The operating system just says "Uhh, this doesn't exist!"

 27

Computer Science 161 Spring 2019 Popa & Weaver

Even More Places To 
Hide!
• In the BIOS/EFI Firmware!

• So you corrupt the BIOS which corrupts the OS...

• Really hard to find: 

Defense, only run cryptographically signed BIOS code as part of the Trusted
Base

• In the disk controller firmware!

• So the master boot record, when read on boot up corrupts the OS...

• But when you try to read the MBR later... It is just "normal"

• Again, defense is signed code: The Firmware will only load a signed operating

system

• Make sure the disk itself is not trusted!

 28

Computer Science 161 Spring 2019 Popa & Weaver

Robust Rootkit Detection: 
Detect the act of hiding...
• Do an "in-system" scan of the disk...

• Record it to a USB drive

• Reboot the system with trusted media

• So a known good operating system

• Do the same scan!

• If the scans are different, you found the rootkit!

• For windows, you can also do a "high/low scan" on the Registry:

• Forces the bad guy to understand the registry as well as Mark Russinovich (the guy behind Sysinternals

who's company Microsoft bought because he understood the Registry better than Microsoft's own
employees!)

• Forces a bind on the attacker:

• Hide and persist? You can be detected

• Hide but don't persist? You can't survive reboots!

 29

Computer Science 161 Spring 2019 Popa & Weaver

Which Means Proper Malcode Cleanup...

 30

Computer Science 161 Spring 2019 Popa & Weaver

Large-Scale Malware

• Worm = code that self-propagates/replicates across systems by
arranging to have itself immediately executed

• Generally infects by altering running code

• No user intervention required

• Propagation includes notions of targeting & exploit

• How does the worm find new prospective victims?

• How does worm get code to automatically run?

• Botnet = set of compromised machines (“bots”) under a common
command-and-control (C&C)

• Attacker might use a worm to get the bots, or other techniques; orthogonal to bot’s use

in botnet
 31

Computer Science 161 Spring 2019 Popa & Weaver

Rapid Propagation

 32

Worms can potentially
spread quickly because
they parallelize the
process of propagating/
replicating.

Same holds for viruses,
but they often spread
more slowly since
require some sort of
user action to trigger
each propagation.

Computer Science 161 Spring 2019 Popa & Weaver

Worms

• Worm = code that self-propagates/replicates across systems by
arranging to have itself immediately executed

• Generally infects by altering running code

• No user intervention required

• Propagation includes notions of targeting & exploit

• How does the worm find new prospective victims?

• One common approach: random scanning of 32-bit IP address space

• Generate pseudo-random 32-bit number; try connecting to it; if successful, try infecting it; repeat

• But for example “search worms” use Google results to find victims

• How does worm get code to automatically run?

• One common approach: buffer overflow ⇒ code injection

• But for example a web worm might propagate using XSS
 33

Computer Science 161 Spring 2019 Popa & Weaver

The Arrival of Internet Worms

• Worms date to Nov 2, 1988 - the Morris Worm

• Way ahead of its time
• Employed whole suite of tricks to infect systems …

• Multiple buffer overflows
• Guessable passwords

• “Debug” configuration option that provided shell access

• Common user accounts across multiple machines

• … and of tricks to find victims

• Scan local subnet

• Machines listed in system’s network config

• Look through user files for mention of 

remote hosts
 34

Computer Science 161 Spring 2019 Popa & Weaver

Arrival of Internet Worms, con’t

• Modern Era began Jul 13, 2001 with release of initial version
of Code Red

• Exploited known buffer overflow in Microsoft IIS Web servers

• On by default in many systems
• Vulnerability & fix announced previous month

• Payload part 1: web site defacement

• HELLO! Welcome to http://www.worm.com! 

Hacked By Chinese!
• Only done if language setting = English

 35

Computer Science 161 Spring 2019 Popa & Weaver

Code Red of Jul 13 2001, con’t

• Payload part 2: check day-of-the-month and …

• … 1st through 20th of each month: spread

• … 20th through end of each month: attack

• Flooding attack against 198.137.240.91 …

• … i.e., www.whitehouse.gov

• Spread: via random scanning of 32-bit 
IP address space

• Generate pseudo-random 32-bit number; try connecting to it; if successful, try

infecting it; repeat

• Very common (but not fundamental) worm technique

• Each instance used same random number seed

• How well does the worm spread?

 36
Linear growth rate

Computer Science 161 Spring 2019 Popa & Weaver

Code Red, con’t

• Revision released July 19, 2001.

• White House responds to threat of flooding attack by changing the

address of www.whitehouse.gov

• Causes Code Red to die for date ≥ 20th of the month due to failure of

TCP connection to establish.

• Author didn’t carefully test their code - buggy!

• But: this time random number generator correctly seeded. Bingo!

 37

Computer Science 161 Spring 2019 Popa & Weaver

 38

The worm
dies off
globally!

Measurement 
artifacts

Number of new hosts
probing 80/tcp as seen at
LBNL monitor of  
130K Internet addresses

Computer Science 161 Spring 2019 Popa & Weaver

Nick's Reaction to 
Code Red

 39

Computer Science 161 Spring 2019 Popa & Weaver

Modeling Worm Spread

• Worm-spread often well described as infectious epidemic

• Classic SI model: homogeneous random contacts

• SI = Susceptible-Infectible

• Model parameters:

• N: population size

• S(t): susceptible hosts at time t.

• I(t): infected hosts at time t.

• β: contact rate

• How many population members each infected host communicates with 

per unit time

• E.g., if each infected host scans 250 Internet addresses per unit time, and 2% of Internet addresses run a vulnerable (maybe

already infected) server ⇒ β = 5

• For scanning worms, larger (= denser) vulnerable pop. ⇒ higher β ⇒ faster worm!

• Normalized versions reflecting relative proportion of infected/susceptible hosts

• s(t) = S(t)/N i(t) = I(t)/N s(t) + i(t) = 1

 40

N = S(t) + I(t) 
S(0) = I(0) = N/2

Computer Science 161 Spring 2019 Popa & Weaver

Computing How An Epidemic Progresses

• In continuous time:

 41

€

dI
dt

= β⋅ I ⋅ S
N

Increase in  
infectibles 
per unit time

Total attempted  
contacts per 
unit time

Proportion of 
contacts expected  
to succeed

• Rewriting by using i(t) = I(t)/N, S = N - I:

€

di
dt

= β i(1− i) ⇒

€

i(t) =
eβt

1+eβt
Fraction
infected grows
as a logistic

Computer Science 161 Spring 2019 Popa & Weaver

Fitting the Model to “Code Red”

 42

Exponential  
initial growth

Growth slows as 
it becomes harder 
to find new victims!

Code Red = first worm
of the “Modern Worm
Era”, circa 2001.

Computer Science 161 Spring 2019 Popa & Weaver

Life Just Before Slammer

 43

Computer Science 161 Spring 2019 Popa & Weaver

Life 10 Minutes After Slammer

 44

Computer Science 161 Spring 2019 Popa & Weaver

Going Fast: Slammer

• Slammer exploited connectionless UDP service, rather than
connection-oriented TCP

• Entire worm fit in a single packet!

• ⇒ When scanning, worm could “fire and forget”  

 Stateless!

• Worm infected 75,000+ hosts in << 10 minutes

• At its peak, doubled every 8.5 seconds

 45

Computer Science 161 Spring 2019 Popa & Weaver

The Usual Logistic Growth

 46

Computer Science 161 Spring 2019 Popa & Weaver

Slammer’s Growth

 47

What could have
caused growth to
deviate from the
model?

Hint: at this point the
worm is generating
55,000,000 scans/sec

Answer: the Internet ran
out of carrying capacity!
(Thus, β decreased.)
Access links used by worm
completely clogged.
Caused major collateral
damage.

Computer Science 161 Spring 2019 Popa & Weaver

Witty...

• A worm like Slammer but with a twist...

• Targeted network intrusion detection sensors!

• Released ~36 hours after vulnerability disclosure and patch availability!

• Payload wasn't just spreading, however...

• while true {  

 for i := range(20000){  
 send self to random target;  
 }  
 select random disk (0-7)  
 if disk exists {  
 select random block, erase it;  
 }}

 48

Computer Science 161 Spring 2019 Popa & Weaver

Stuxnet

• Discovered July 2010. (Released: Mar 2010?)

• Multi-mode spreading:

• Initially spreads via USB (virus-like)

• Once inside a network, quickly spreads internally using Windows RPC scanning

• Kill switch: programmed to die June 24, 2012

• Targeted SCADA systems

• Used for industrial control systems, like manufacturing, power plants

• Symantec: infections geographically clustered

• Iran: 59%; Indonesia: 18%; India: 8%

 49

Computer Science 161 Spring 2019 Popa & Weaver

Stuxnet, con’t

• Used four Zero Days

• Unprecedented expense on the part of the author

• “Rootkit” for hiding infection based on installing Windows drivers
with valid digital signatures

• Attacker stole private keys for certificates from two companies in Taiwan

• Payload: do nothing …

• … unless attached to particular models of frequency converter drives operating at

807-1210Hz

• … like those made in Iran (and Finland) …

• … and used to operate centrifuges for producing enriched uranium for nuclear

weapons
 50

Computer Science 161 Spring 2019 Popa & Weaver

Stuxnet, con’t

• Payload: do nothing …

• … unless attached to particular models of frequency converter drives operating at

807-1210Hz

• … like those made in Iran (and Finland) …

• … and used to operate centrifuges for producing enriched uranium for nuclear

weapons

• For these, worm would slowly increase drive frequency to 1410Hz

• … enough to cause centrifuge to fly apart …

• … while sending out fake readings from control system indicating everything was

okay …

• … and then drop it back to normal range
 51

Computer Science 161 Spring 2019 Popa & Weaver

 52

Computer Science 161 Spring 2019 Popa & Weaver

The "Toddler" Attack Payload...

• Stuxnet was very carefully engineered...

• Designed to only go off under very specific circumstances

• But industrial control systems are inherently vulnerable

• They consist of sensors and actuators

• And safety is a global property

• Generic Boom:

• At zero hour, the payload sees that it is on control system:  

map the sensors and actuators, see which ones are low speed vs high speed

• T+30 minutes: Start replaying sensor data, switch actuators in low-speed system

• T+60 minutes: Switch all actuators at high speed...

• This has been done: 
A presumably Russian test attack on the Ukranian power grid! ("CrashOverride"
attack)

 53

Computer Science 161 Spring 2019 Popa & Weaver

And NotPetya...

• NotPetya was a worm deliberately launched by Russia against
Ukraine

• Initial spread: A corrupted update to MeDoc Ukranian Tax Software

• Then spread within an institution using "Eternal Blue" (Windows vulnerability) and

"Mimikatz"

• Mimikatz is way way more powerful: 

Takes advantage of windows transitive authorization...

• IF you are running on the admin's machine, you can take over the domain controller

• IF you are running on the domain controller, you can take over every computer!!!

• Then wiped machines as fake ransomware

• Give a veneer of deniability...

• Shut down Mersk and many other global companies!

 54

Computer Science 161 Spring 2019 Popa & Weaver

And Overall Taxonomy of Spread

• Scanning

• Look for targets

• Can be bandwidth limited

• "Target Lists"

• Pregenerated (Hitlist)

• On-the-host (Topological)

• Query a third party server that lists servers (Metaserver)

• Passive

• Wait for a contact: Infect with the counter-response

• More detailed taxonomy here:

• http://www.icir.org/vern/papers/taxonomy.pdf

 55

Computer Science 161 Spring 2019 Popa & Weaver

Botnets

• Collection of compromised machines (bots) under (unified) control of an
attacker (botmaster)

• Method of compromise decoupled from method of control

• Launch a worm / virus / drive-by infection / etc.

• (Or just buy the access – discussed later)

• Upon infection, new bot “phones home” to rendezvous w/ botnet
command-and-control (C&C)

• Botmaster uses C&C to push out commands and updates

• Lots of ways to architect C&C:

• Star topology; hierarchical; peer-to-peer

• Encrypted/stealthy communication

 56

Computer Science 161 Spring 2019 Popa & Weaver

 57

Centralized Botnet
Command-and-
Control (C&C) / Botmaster

Computer Science 161 Spring 2019 Popa & Weaver

Example of C&C Messages

1. Activation (report from bot to botmaster)

2. Email address harvests

3. Spamming instructions

4. Delivery reports

5. DDoS instructions

6. FastFlux instructions (rapidly changing DNS)
7. HTTP proxy instructions

8. Sniffed passwords report

9. IFRAME injection/report

 58

From the “Storm”
botnet circa 2008

Computer Science 161 Spring 2019 Popa & Weaver

Fighting Bots / Botnets

• How can we defend against bots / botnets?

• Approach #1: prevent the initial bot infection

• Equivalent to preventing malware infections in general …. HARD

• Approach #2: Take down the C&C master server

• Find its IP address, get associated ISP to pull plug

 59

Computer Science 161 Spring 2019 Popa & Weaver

Fighting Bots / Botnets

• How can we defend against bots / botnets?

• Approach #1: prevent the initial bot infection

• Equivalent to preventing malware infections in general …. HARD

• Approach #2: Take down the C&C master server

• Find its IP address, get associated ISP to pull plug

• Botmaster countermeasures?

• Counter #1: keep moving around the master server

• Bots resolve a domain name to find it (e.g. c-and-c.evil.com)

• Rapidly alter address associated w/ name (“fast flux”)

• Counter #2: buy off the ISP … (“bullet-proof hosting”)

 60

Computer Science 161 Spring 2019 Popa & Weaver

 61

Computer Science 161 Spring 2019 Popa & Weaver

 62

Computer Science 161 Spring 2019 Popa & Weaver

 63

Computer Science 161 Spring 2019 Popa & Weaver

 64

Computer Science 161 Spring 2019 Popa & Weaver

 65

Computer Science 161 Spring 2019 Popa & Weaver

 66

Computer Science 161 Spring 2019 Popa & Weaver

Fighting Bots / Botnets, con’t

• Approach #3: seize the domain name used for C&C

• … Botmaster counter-measure?

• Business counter-measure: bullet-proof domains

 67

Computer Science 161 Spring 2019 Popa & Weaver

 68

Computer Science 161 Spring 2019 Popa & Weaver

 69

Computer Science 161 Spring 2019 Popa & Weaver

 70

Computer Science 161 Spring 2019 Popa & Weaver

Fighting Bots / Botnets, con’t

• Approach #3: seize the domain name used for C&C

• … Botmaster counter-measure?

• Business counter-measure: bullet-proof domains

• Technical counter-measure: DGAs

• Each day (say), bots generate large list of possible domain names using a Domain

Generation Algorithm

• Large = 50K, in some cases

• E.g.: eqxowsn.info, ggegtugh.info, hquterpacw.net, oumaac.com, qfiadxb.net, rwyoehbkhdhb.info,

rzziyf.info, vmlbhdvtjrn.org, yeiesmomgeso.org, yeuqik.com, yfewtvnpdk.info, zffezlkgfnox.net

• Bots then try a random subset looking for a C&C server

• Server signs its replies, so bot can’t be duped

• Attacker just needs to register & hang onto a small portion of names to retain control over botnet

 71

Computer Science 161 Spring 2019 Popa & Weaver

Fighting Bots / Botnets, con’t

• Approach #4: rally the community to sever bullet-proof
hosting service’s connectivity

 72

Computer Science 161 Spring 2019 Popa & Weaver

 73

Computer Science 161 Spring 2019 Popa & Weaver

Fighting Bots / Botnets, con’t

• Approach #4: rally the community to sever bullet-proof
hosting service’s connectivity

• Botmaster countermeasure?

• Who needs to run a bot when you can buy 

just-in-time bots … !

 74

Computer Science 161 Spring 2019 Popa & Weaver

The Malware 
“Pay Per Install” (PPI) Ecosystem

 75

Computer Science 161 Spring 2019 Popa & Weaver

�76

Computer Science 161 Spring 2019 Popa & Weaver

 77Th
e

PP
I E

co
-s

ys
te

m

Computer Science 161 Spring 2019 Popa & Weaver

 78Th
e

PP
I E

co
-s

ys
te

m

Computer Science 161 Spring 2019 Popa & Weaver

 79Th
e

PP
I E

co
-s

ys
te

m

Computer Science 161 Spring 2019 Popa & Weaver

 80Th
e

PP
I E

co
-s

ys
te

m

Computer Science 161 Spring 2019 Popa & Weaver

• \

 81Th
e

PP
I E

co
-s

ys
te

m

Computer Science 161 Spring 2019 Popa & Weaver

 82Th
e

PP
I E

co
-s

ys
te

m

Computer Science 161 Spring 2019 Popa & Weaver

 83

Computer Science 161 Spring 2019 Popa & Weaver

�84Prices are per thousand installs

Computer Science 161 Spring 2019 Popa & Weaver

Fighting Bots / Botnets, con’t

• Approach #4: rally the community to sever bullet-proof
hosting service’s connectivity

• Botmaster countermeasure?

• Who needs to run a bot when you can buy just-in-time bots

… !

• Approach #5: use the complexity of the malware

infrastructure to undermine it ...

 85

Computer Science 161 Spring 2019 Popa & Weaver

 86

Infiltration
opportunity

1. Reverse-engineer
downloader protocol

2. Write emulator that
fakes an infection Th

e
PP

I E
co

-s
ys

te
m

Computer Science 161 Spring 2019 Popa & Weaver

Intelligence via Infiltration...

 87

Running for five months, Berkeley & UCSD researchers
downloaded (“milked”) > 1M binaries (9K distinct) from 4
different affiliate programs

“Milking” = mimic downloader, repeatedly
ask PPI service for next program to install

Computer Science 161 Spring 2019 Popa & Weaver

 88

The majority of
the world’s top

malware
appeared in
the “milk”

M
al

w
ar

e
Fa

m
ily

Malware Extracted via “Milking”

Date

Computer Science 161 Spring 2019 Popa & Weaver

Addressing The Botnet Problem

• What are our prospects for securing the Internet from the threat of botnets?
What angles can we pursue?

• Angle #1: detection/cleanup

• Detecting infection of individual bots hard as it’s the defend-against-general-malware problem

• Detecting bot doing C&C likely a losing battle as attackers improve their sneakiness & crypto

• Cleanup today lacks oomph:

• Who’s responsible? … and do they care? (externalities)

• Landscape could greatly change with different model of liability

• Angle #2: go after the C&C systems / botmasters

• Difficult due to ease of Internet anonymity & complexities of international law

• But: a number of successes in this regard

• Including some via peer pressure rather than law enforcement (McColo)

• One potential angle: policing domain name registrations
 89

Computer Science 161 Spring 2019 Popa & Weaver

Addressing The Problem, con’t

• Angle #3: prevention

• Bots require installing new executables or modifying existing ones

• Perhaps via infection …

• … or perhaps just via user being fooled / imprudent

• Better models?

• We could lock down systems so OS prohibits user from changing configuration

• Sacrifices flexibility

• How does this work for home users?

• Can we leverage trusted kernels + white lists / code signing?

• Or: structure OS/browser so code runs with Least Privilege

• Does this solve the problem?

• Depends on how granular the privileges are … and how the decision is made regarding just what privileges are

“least”

• E.g., iTunes App Store model (vetting), Android model (user confirmation)

 90

Computer Science 161 Spring 2019 Popa & Weaver

Or Forget Fighting Botnets...

• Fight the business models!

• If bad guys can't make money, they stop doing it

• Managed to do this reasonably well for Viagra spam...

• But can we do this for other areas?

 91

Computer Science 161 Spring 2019 Popa & Weaver

Worm Take-Aways

• Potentially enormous reach/damage

• Weapon

• Hard to get right

• Emergent behavior / surprising dynamics

• Remanence: worms stick around

• E.g. Slammer still seen in 2013!

• Propagation faster than human response
 92

