
David Wagner CS 161
Computer Security Notes

Controlling Network Access Using Firewalls

Suppose you are given a machine, and asked to harden it against external attack. How do
you do it?

One starting point is to look at the functionality and network services that this machine is
providing to the outside world. If any of its network services are buggy or have security holes,
an attacker may be able to penetrate your machine by interacting with that application. As
we know, bugs are inevitable, and bugs in security-critical applications often lead to security
holes. Thus, the more network services your machine runs, the greater the risk.

The general principle here is: bugs in code that you don’t run, can’t hurt you. This is essentially
an application of the KISS (Keep It Simple, Stupid) principle: the less functionality you try
to provide, the less opportunity there is for security vulnerabilities in that functionality.

This suggests one simple way to reduce the risk of external attack: Turn off every unnecessary
network service. Disable every network-accessible application that isn’t absolutely needed.
Build a stripped-down box that runs the least amount of code necessary; after all, any code
that you don’t run, can’t harm you. And for any network service that you do have to run,
double-check that is has been implemented and configured securely, and take every precaution
you can to render its use safe.

This is an intuitive and effective approach, and it can work well when you only have one
or two machines to secure, but now let’s consider what happens when we scale things up.
Suppose you are in charge of security for all of Macrosloth Corp. Your job is to protect
the computer systems, networks, and computing infrastructure of the entire company from
external attack. How are you going to do it?

If the company has thousands of computers, it won’t be easy to harden every single machine
individually. There may be many different operating systems and hardware platforms. Different
users may have vastly different requirements, and a service that can be disabled for one user
might be necessary to another user’s job. Moreover, new machines are bought all the time,
machines come and go every day, and users upgrade their machines. At this scale, it’s often
hard just to get an accurate list of all machines inside the company—and if you miss even one
machine, it then becomes a vulnerable point that can be broken into and might serve as a
jumping-off point for attackers to use to attack the rest of your network. The sheer complexity
of managing all of this might make it infeasible to harden each machine individually.

Nonetheless, it’s still true that one risk factor is the number of network services that are
accessible to outsiders. This suggests a defense. If we could block, in the network, outsiders
from being able to interact with many of the network services running on internal machines,
we could reduce the risk. This is exactly the concept behind firewalls : a firewall is a device

Lecture Notes by David Wagner 1 of 13



designed to block access to network services running on internal machines.

At this point, it’s clear that there are two questions we’ll have to settle:

1. What is our security policy? For example, which network services should be made visible
to the outside world, and which ones should be blocked? How do we distinguish insiders
from outsiders?

2. How will we enforce this security policy? How do we build a firewall that does what we
want? What are the implementation issues?

We’ll tackle each of these in turn.

1 Security Policy

A little bit of background. In its simplest form, we can visualize the topology of the internal
network as shown in this figure:

Internet Internal Network

We have an internal network, which hosts all of the company’s machines; the external world
(e.g., the rest of the Internet); and a communications link between the two.

How do we decide what is inside, and what is outside? We might decide that we trust all
company employees, but we don’t trust anyone else (a very simple threat model). Then we’ll
define the internal network to contain machines owned by trusted employees, and the external
world to include everything else. The link to our Internet Service Provider (ISP) might be
the link between these two worlds.

The very simplest security policy is an outbound-only policy. Let’s distinguish between inbound
and outbound connections. Inbound connections are initiated by external users and attempt
to connect to services running on internal machines, while outbound connections are attempts
by internal users to initiate contact with external services. An outbound-only policy would
permit all outbound connections (reasoning: internal users are trusted; if they want to open a
connection, we’ll let them), but all inbound connections would be strictly denied. The effect
is that none of our network services are visible to the outside world, though of course they
can still be accessed by internal users. Unfortunately, this policy is probably too restrictive
for any large organization, since it means that the company cannot run a public webserver, a
mail server, an FTP server, and so on. Therefore, we will need a little more flexibility in how
we define the security policy.

In general, the security policy is going to be a particular kind of access control policy. We will

Lecture Notes by David Wagner 2 of 13



have two subjects: an anonymous external user, and a generic inside user.1 The objects are the
set of network services that are run on all inside machines; if there are 1,000 machines, and
each machine runs 5 network services, we end up with 5,000 objects. The access control policy
should then specify, for each subject and each object, whether that subject has permission to
access that object.

Firewalls are usually used to enforce a particularly simple kind of access control policy. Inside
users are permitted to connect to any network service desired. External users are restricted:
there are some services that are intended to be externally visible, and external users are
permitted to connect to these services, but there are also other services that are not intended
to be accessible from the outside world, and those services are blocked by the access policy.

The first thing the security administrator needs to do is identify a security policy, or, in other
words, which services external users should and shouldn’t have access to. How should we do
it? Broadly speaking, there are two philosophies we might use to determine which services
we allow external users to connect to:

• Default-allow : By default, every network service is permitted, unless it has been specifi-
cally listed as denied. Under this approach, one might start off by allowing outside users
access to all internal services, and then mark a few that are known to be unsafe and
should be blocked. For instance, if tomorrow we hear about a new threat that targets
Internet Relay Chat (IRC) servers, then we might revise our security policy by denying
outsiders access to our IRC servers.

• Default-deny : By default, every network service is denied, unless it has been specifically
listed as allowed. We might start off with a list of a few known servers that need to be
visible to the outside world and that have been adjudged as reasonably safe; external
users will then be implicitly denied access to any service not on the list. If our users
complain that, say, their department’s FTP server is not accessible to the outside world,
we can check whether they are running a reasonably safe and properly configured
implementation of the FTP service, and if so add them to the “allow” list.

A default-allow policy is a lot more convenient, because from a functionality point of view,
everything stays working. However, from a security perspective, default-allow is dangerous.
The problem is that default-allow fails open: if you make any mistake (i.e., there is some
service that is vulnerable, but you forget to add it to the “deny” list), then the result is likely
to be an expensive security failure.

In comparison, default-deny fails closed: if you make a mistake (i.e., some service that is safe
has been mistakenly omitted from the “allow” list), then the result is a loss of functionality
or availability, but not a security breach.

When operating at large scales, such errors of omission are likely to be common.2 Because

1Alternatively, we could say that we divide the subjects into two groups. The inside users group contains
all company employees, and the external users group contains everyone else. In our case, the access granted
to a subject will be determined solely by which group they are in.

2Indeed, errors of omission are a lot more likely than errors of commission. There may be thousands of
potential services out there, but only a few dozen are likely to make your deny or allow list. This means there

Lecture Notes by David Wagner 3 of 13



errors of omission are a lot more dangerous in a default-allow policy than in a default-deny
policy, and because the cost of a security failure is often a lot more than the cost of a loss of
functionality, default-deny is usually a much safer bet.

Default-deny has another advantage. When the system fails open, you may never notice the
failure. Attackers who penetrate your system security are unlikely to tell you that they have
done so, and so security breaches may go unnoticed for a long time. This gets you into an
arms race, where you have to keep up with all the attacks adversaries discover, and even
stay ahead of them. This arms race is generally a losing proposition, because there are a
lot more of the attackers than there are of the defenders, and the attacker only has to win
once to make you really miserable. In contrast, when the system fails closed, someone will
probably notice a configuration error (they’ll complain: why isn’t the FTP service working? ),
and the omission will be immediately evident and easily correctable. This makes failures in
default-allow systems that much more costly than failures in default-deny systems.

For these reasons, almost all well-implemented firewalls use a default-deny policy. The security
policy specifies a list of “allowed services” that external users are permitted to connect to, and
all other services are forbidden. In many cases, some kind of risk assessment and cost-benefit
analysis is applied to every network service on the allowed list; if some service is too risky
compared to its benefits, then it is removed from the allowed list.

How can we identify network services? Let’s recall some background on TCP/IP networks.
A TCP service is recognized by the machine’s IP address and the TCP port number on
that machine. For instance, the web server on www.cs.berkeley.edu (currently) resides at
IP address 128.32.244.172, port 80. The mail service resides at 169.229.218.141, port
25. UDP services are identified similarly, though the port namespace for TCP and UDP is
disjoint (a TCP service on port 25 is different from a UDP service on port 25).

Therefore, we can identify each network service with a triplet (m, r, p), where m is the IP
address of a machine, r is a protocol identifier (e.g., TCP or UDP), and p is the port number.
For instance, the company might have its official web server hosted on machine 1.2.3.4, and
then (1.2.3.4,TCP, 80) would be added to the allowed list. In a default-deny policy, the list
of network services that should be externally visible would be represented as a set of these
triplets.

2 Enforcement: Stateful Packet filters

The key trick behind enforcing such a security policy is to do it at a chokepoint in the network.
In the topology shown in our previous figure, there is only a single link connecting the inside
and outside networks. Therefore, we will replace that link with a firewall that filters network
connections and blocks any connections that are denied by the security policy, looking like
this:

are thousands of chances to inadvertently omit a service from the list (an error of omission), but only a few
dozen chances to inadvertently put something on the list that doesn’t belong there (an error of commission).

Lecture Notes by David Wagner 4 of 13



Internet Internal Network
Firewall

The existence of a central chokepoint gives us a single place to monitor, where we can easily
enforce a security policy on thousands of machines with minimal effort. The idea is a familiar
one from physical security. For instance, at the airport, all passengers are funneled through a
security checkpoint where access can be controlled. It’s a lot easier to perform such checks at
one or a few checkpoints than at dozens or hundreds of entrances.

A stateful packet filter is a router to check each packet against the access control policy. If
the policy allows the packet, then it is forwarded on; if it denies the packet, then the packet
is dropped and not forwarded. The policy is usually specified as a list of rules; as the firewall
processes each packet, it examines the list of rules one-by-one, and the first matching rule
determines how the packet will be handled.

Typically, rules specify which connections are allowed. The rule can list the protocol (tcp or
udp), the initiator’s IP address (the machine that initiated the connection), the initiator’s
port number, the recipient’s IP address (the machine that the connection is directed to), and
the recipient’s port number. A rule can use wildcards for any of these. Each rule also specifies
what action to take for matching connections; typical values might be ALLOW or DROP.

Let’s try an example. What does this ruleset do?

allow tcp *:* -> 1.2.3.4:25

drop * *:* -> *:*

Answer: it allows anyone to open a TCP connection to port 25 on machine 1.2.3.4. (Port 25
is the port for mail traffic, so this would be appropriate if machine 1.2.3.4 hosts a public mail
server.) It blocks all other connections. Notation: 1.2.3.4:25 indicates IP address 1.2.3.4
and port 25; * is a wildcard, which may appear in any field.

A stateful packet filter maintains state: it keeps track of all open connections that have been
established. This is important, because when it processes a packet, it allows the firewall to
check whether the packet is part of an already-open connection and, if so, allow the packet
to be forwarded. Without state, it’s harder to know how to handle the packet: if we see a
packet from X to Y, is this a packet on a connection that was initiated by X to server Y; or
is a reply on a connection initiated by Y to server X? The answer might determine whether
the packet should be allowed or not. Because it keeps state, this opens the door to policies
that inspect the data (e.g., block any attempt to log into a FTP server as username “root”).
However, a stateful packet filter must be written carefully to ensure that it keeps only a small
amount of state for each connection, so that the firewall doesn’t run out of memory to hold
all this information.

It’s also common that rules can match based on which network interface the packet was
received on. Remember that a router is a device that has two (or more) interfaces, where

Lecture Notes by David Wagner 5 of 13



network links can be plugged in; a packet is received on one interface, and is forwarded out
on another interface. Suppose that we call the interface attached to the internal network int,
and the interface to the rest of the Internet ext. Then we could have a ruleset like:

allow tcp *:*/ext -> 1.2.3.4:25/int

allow tcp *:*/int -> *:*/ext

drop * *:* -> *:*

This ruleset allows inbound connections to port 25 on 1.2.3.4 (rule 1) and allows all outbound
connections (rule 2); all other connections are dropped (rule 3). The ability to match on
network interfaces simplifies ruleset administration, as we don’t need to hardcode a list of all
IP addresses of internal machines (e.g., in rule 2). It also means that an external attacker
can’t use IP address spoofing to spoof an internal IP address and fool the firewall.

3 Other Kinds of Firewalls

Stateless packet filters are a cruder kind of firewall: they operate at the network level, and
generally look only at TCP, UDP, and IP headers. They differ from stateful packet filters
in that they do not keep any state: each packet is handled as it arrives, with no memory
or history retained. This requires some hacks to make it handle standard policies; see the
appendix if you are curious about the details.

One can also build firewalls that restrict traffic according to the contents of the data fields;
these are known as application-layer firewalls, or application firewalls for short. Application
firewalls have some security advantages, because they can enforce more restrictive security
policies and because they can transform data on the fly.

Rather than simply inspecting traffic, we can also build firewalls that participate in application-
layer exchanges. For example, we can introduce a web proxy in a network and configure all
local systems to use it for their web access.3 The local web browsers would then connect to
the proxy rather than directly to remote web servers, and the proxy would in turn make the
actual remote request. A major benefit of this design is that we can include monitoring in
the proxy that has available for its decision-making all of the application-layer information
associated with a given request and reply, so we can make fine-grained allow/deny decisions
based on a wealth of information.

This sort of design isn’t specific to web proxies but can be done for many different types of
applications. The general term is an application proxy or gateway proxy. One difficulty with
using this approach, however, is implementation complexity. The application proxy needs to
understand all of the details of the application protocol that it mediates. Another potential
issue concerns performance. If we bottleneck all of the site’s outbound traffic through just a
few proxy systems, they may be overwhelmed by the load.

3 We could also enforce this configuration requirement by installing rules in a traditional firewall that
only allow outbound web connections that come from the web proxy, dropping any that other local systems
initiate directly.

Lecture Notes by David Wagner 6 of 13



For more information on firewalls, the authoritative reference is Cheswick, Bellovin, and
Rubin: Firewalls and Internet Security: Repelling the Wily Hacker. Packet filtering software
is available for many operating systems; for example, Linux provides iptables.

4 Principles

Firewalls embody several useful principles that you can apply elsewhere in computer security.
As mentioned earlier, firewalls can be thought of as enforcing a particular kind of access
control policy, and they are optimized for this special task. The notion of a chokepoint is
crucial, because it is what makes it possible to reliably enforce the access control policy
(“complete mediation”), and we see the same thing come up elsewhere in access control.

In general, the mechanism that enforces an access control policy often takes the form of a
reference monitor. The purpose of a reference monitor is to examine every request to access
any controlled resource (an “object”) and determine whether that request should be allowed.
In abstract terms, this looks like:

reference
monitorrequestsubject object

There are three security properties that any reference monitor should have:

• Unbypassable (also known as Always invoked): The reference monitor should be invoked
on every operation that is controlled by the access control policy. There must be
no way to bypass the reference monitor (i.e., the complete mediation property): all
security-relevant operations must be mediated by the reference monitor.

• Tamper-resistant: The reference monitor should be protected from tampering by other
agents. For instance, other parties should not be able to modify its code or state. The
integrity of the reference monitor must be maintained.

• Verifiable: It should be possible to verify the correctness of the reference monitor,
including that it actually does enforce the desired access control policy correctly. This
usually requires that the reference monitor be extremely simple, as generally it is beyond
the state of the art to verify the correctness of subsystems with any significant degree
of complexity.

We can recognize a firewall as an instance of a reference monitor. How are these three
properties achieved?

• Always invoked: We assumed that the packet filter is placed on a chokepoint link, with
the property that all communications between the internal and external networks must
traverse this link. Thus, the packet filter has an opportunity to inspect all such packets.
Moreover, packets are not forwarded across this link unless the packet filter inspects

Lecture Notes by David Wagner 7 of 13



them and forwards them (there needs to be no other mechanism by which packets might
flow across this link).

Of course, in some cases we discover that it doesn’t work out like we hoped. For instance,
maybe a user hooks up an unsecured wireless access point to their internal machine.
Then anyone who drives by with a wireless-enabled laptop effectively gains access to
the internal network, bypassing the packet filter. This illustrates that, to use a firewall
safely, we’d better be sure that our firewalls cover all of the links between the internal
network and the external world. We term this set of links as the security perimeter.

• Tamper-resistant: We haven’t really discussed how to make packet filters resistant to
attack. However, they obviously should be hardened as much as possible, because they
are a single point of failure. Fortunately, their desired functionality is relatively simple, so
we should have a reasonable chance at protecting them from outside attack. For instance,
they might not need to run a standard operating system, any user-level programs, or
network services, eliminating many avenues of outside attack. More generally, we can
use firewall protection for the firewall itself, and not allow any management access to
the firewall device except from specific trusted machines. Of course, we must also ensure
the physical security of the packet filter device.

• Verifiable: In current practice, unfortunately the correctness of a firewall’s operation is
generally not verified in any systematic fashion. The software is usually too complex
for this to be feasible. And we do suffer as a result of our failure to verify packet filters:
over time, there have been bugs that allowed attackers to defeat the intended security
policy by sending unexpected packets that the packet filter doesn’t handle quite the
way it should.

In addition, experience has shown that firewall policies rapidly become complex. Thus,
even if a firewall’s internal workings are entirely correct, the rules it enforces may not
in fact accurately reflect the access controls that the operator believes they provide.

The notion of a reference monitor recurs over and over again. Thus, the three requirements
for a secure reference monitor are well worth absorbing.

Firewalls also embody another useful principle: Orthogonal security. If the security mechanism
is orthogonal from, and transparent to, the rest of the application, then it can be deployed to
protect pre-existing legacy systems much more easily than security mechanisms that must be
integrated with the rest of the system. A reference monitor that filters the set of requests,
dropping unallowed requests but allowing allowed requests to pass through unchanged, is
essentially transparent to the rest of the system: other components do not need to be aware
of the presence of the reference monitor. Such mechanisms are easier to retrofit into legacy
systems.

However, while orthogonal security has nice deployment properties, it also represents a form
of “bolt-on security”: that is, security that’s added to a system after the system has already
been designed and implemented. Bolt-on security can prove brittle because if the design of the
added security mechanism uses different abstractions than those of the system it’s meant to
protect, there can be holes in the protection. Time permitting, we will discuss some of these

Lecture Notes by David Wagner 8 of 13



in lecture in terms of ways that firewalls can be evaded due to their limited understanding of
the traffic they carry.

5 Experience with Firewalls

Firewalls are very widely used today, and represent a great success story of technology transfer
from research to practice. Why do firewalls work well?

• Central control: A firewall provides a single point of control. When security policies
change, only the firewall has to be updated; we do not have to touch individual machines.
For instance, when a new threat to an Internet service is discovered, it is often possible to
very quickly block it by modifying the firewall’s security policy slightly, and all internal
machines benefit from this protection. This makes it easier to administer, control, and
update the security policy for an entire organization.

• Easy to deploy: Because firewalls are essentially transparent to internal hosts, there
is an easy migration path, and they are easy to deploy (incrementally, or all at once).
Because one firewall can protect thousands of machines, they provide a huge amount of
leverage.

• An important problem: They address a burning problem. Security vulnerabilities in
network services are rampant. In principle, a better response might be to clean up the
quality of the code in our network services; but that is an enormous challenge, and
firewalls are much cheaper.

Firewalls have some serious shortcomings, though. How do firewalls fail? What are their
disadvantages?

• Loss of functionality: The very essence of the firewalls concept involves turning off
functionality, and often users miss the disabled functionality. Some applications don’t
work with firewalls. For instance, peer-to-peer networks have big problems: if both users
are behind firewalls, then when one user tries to connect to another user, the second
user’s firewall will see this as an inbound connection and will usually block it.

The observation underlying firewalls is that connectivity begets risk, and firewalls are
all about managing risk by reducing connectivity from the outside world to internal
machines. It should be no surprise that reducing network connectivity can reduce the
usefulness of the network.

• The malicious insider problem: Firewalls make the assumption that insiders are trusted.
This gives internal users the power to violate your security policy. Firewalls are usually
used to establish a security perimeter between the inside and outside world. However,
if a malicious party breaches that security perimeter in any way, or otherwise gains
control of an inside machine, then the malicious party becomes trusted and can wreak
havoc, because inside machines have unlimited power to attack other inside machines.
For this reason, Bill Cheswick called firewalled networks a “crunchy outer coating, with

Lecture Notes by David Wagner 9 of 13



a soft, chewy center.” There is nothing that the firewall can do once a bad guy gets
inside the security perimeter.

We see this in practice. For example, laptops have become a serious problem. People
take their laptop on a trip with them, connect to the Internet from their hotel room
(without any firewall), get infected with malware, then bring their laptop home and
connect it to their company’s internal network, and the malware proceeds to infect
other internal machines.

• Adversarial applications: The previous two properties can combine in a particularly
problematic way. Suppose that an application developer realizes their protocol is going
to be blocked by their users’ firewalls. What do you think they are going to do? Often,
what happens is that the application tunnels its traffic over HTTP (web, port 80)
or SMTP (email, port 25). Many firewalls allow port 80 traffic, because the web is
the “killer app” of the Internet, but now the firewall cannot distinguish between this
application’s traffic and real web traffic.

The fact that insiders are trusted has as a consequence that all applications that insiders
execute will be trusted, too, and when such applications act in a way that subverts
the security policy, the effectiveness of the firewall can be limited (even though the
application developers probably do not think of themselves as malicious). The end
result is that, over time, more and more traffic goes over ports nominally associated
with other application protocols (particularly port 80, intended for web access), with
firewalls gaining less and less visibility into the traffic that traverses them. As a result
firewalls, are becoming increasingly less effective.

A Optional: Stateless packet filters

(This section is optional. You are not responsible for understanding it. This is only if you are
curious about how stateless packet filters work.)

We talked earlier about stateful packet filters. They are a successor to stateless packet filter,
which is a simpler kind of firewall. A stateless packet filter is a router that is augmented with
an access control list, usually specified as a list of rules. When any packet is received by the
router, the firewall consults the security rules to decide whether it should foward the packet
or drop it. A rule can specify which packets it will apply to, based on the header fields of
the packets. For instance, the rule might specify source and destination IP addresses and
port numbers and protocol names, or wildcards for any of these. Each rule also specifies what
action to take for matching packets; typical values might be ALLOW or DROP.

As the firewall processes each packet, it examines the list of rules one-by-one, and the first
matching rule determines how the packet will be handled.

Let’s try an example. What does this ruleset do?

drop tcp *:* -> *:23

allow * *:* -> *:*

Lecture Notes by David Wagner 10 of 13



Answer: it blocks all TCP packets destined to port 234 and forwards all other traffic undis-
turbed. Notation: 1.2.3.4:25 indicates IP address 1.2.3.4 and port 25; * is a wildcard,
which may appear in any field.

One problem with this policy is that it has no notion of a connection, or of inbound vs.
outbound connections. It will drop outbound Telnet connections initiated by inside users,
which might be undesirable. Another problem is that this is a default-allow policy: it allows
everything except one explicitly listed service. As we’ve argued before, that’s error-prone.

So let’s suppose that we’ve carefully built a security policy and decided that we want to
allow inbound connections to port 25 of our mail server (1.2.3.4), and allow all outbound
connections, and that’s it. Let’s suppose we’ve predefined a macro {ourhosts} as a hard-
coded list of all internal hosts. (This might be unwieldy in its size, a point we return to in a
bit.) How does the following ruleset look?

allow tcp *:* -> 1.2.3.4:25

allow tcp {ourhosts}:* -> *:*

drop * *:* -> *:*

Answer: This policy doesn’t do what we want, because of the way that TCP connections work.
Recall that a TCP connection is bidirectional, and involves packets going in both directions.
Indeed, when a TCP connection is initiated, the initiator sends a SYN packet (i.e., the SYN

bit in the TCP header is set), the responder responds with a SYN+ACK packet (i.e., both the
SYN and ACK bits are set in the TCP header), and the initiator sends an ACK packet; finally,
both are able to send data in either direction, and all of the packets other than the very first
SYN packet have the ACK bit set.

The problem is now evident: outbound connections aren’t actually going to work. If some
inside host tries to open a TCP connection to port 80 on an external machine (say), then
the initial SYN packet is going to get through, because it is allowed by rule 2. However, the
SYN+ACK packet coming back does not match rule 1 (because it isn’t destined to port 25) and
does not match rule 2 (because the source IP address is that of the external web server, not
an inside host), so it will be dropped by rule 3, and the connection attempt will time out and
fail.

What we want is that inbound packets associated with an outbound connection should be
allowed, but inbound packets associated with an inbound connection need to be restricted.
We need some way to distinguish the two kinds of inbound packets.

The trick is to use a feature of TCP: the very first packet does not have its ACK bit set, but
all other packets do. Moreover, the recipient will discard any TCP packet with its ACK bit set,
if the packet is not associated with an existing TCP connection. Therefore, the solution is to
use a ruleset like this:

allow tcp *:* -> 1.2.3.4:25

allow tcp {ourhosts}:* -> *:*

4Port 23 happens to be the Telnet port, use for remote login. Telnet is a major security hole because it
transmits passwords in cleartext.

Lecture Notes by David Wagner 11 of 13



allow tcp *:* -> {ourhosts}:* (if ACK bit set)

drop * *:* -> *:*

Rules 1 and 2 allow inbound connections to port 25 on machine 1.2.3.4; rules 2 and 3 allow
outbound connections to any port.

Why does this work? Suppose that the attacker discovers a vulnerability in our “Finger”
service (TCP port 79), and tries to open an inbound TCP connection to a Finger server on
some internal machine. They will have to send a SYN packet to the internal machine, but
because this packet must not have its ACK bit set, it will not be allowed by the policy and will
be dropped before it is ever seen by the internal Finger server program. If they try to send a
packet with its ACK bit set (say, a SYN+ACK packet) to port 79 on the internal machine, this
will be permitted by the firewall, but TCP implementations disregard any arriving packet
that has its ACK bit set, but is not part of an existing connection, so such packets will also be
harmless. In this way, we can specify policies restricting inbound connections.

However, there is a subtle security hole lurking in this ruleset. The problem is related to
IP spoofing. Recall that there is nothing in the IP protocol that prevents an attacker from
sending a packet with an incorrect (spoofed) source address; indeed, routers in general don’t
even look at the source address, so such a packet will be correctly routed to the destination.
Suppose that 1.2.3.7 is one of our internal hosts. Imagine if an attacker sends a spoofed
TCP SYN packet, with its source address set to 1.2.3.7, the destination address of some
targetted internal machine, and destination port 79. Note that this packet will be allowed by
rule 2 of the ruleset above, and so will reach the internal target machine. The target host
will respond with a SYN+ACK packet to 1.2.3.7 and wait for the ACK that completes the
three-way handshake. If the attacker at this point sends a spoofed TCP ACK packet, with
source address 1.2.3.7, and then follows it up with a spoofed TCP data packet, again with
source address 1.2.3.7, then all of these packets will be allowed through the packet filter
and will be accepted by the target host (because they are part of a valid TCP connection).5

This allows the attacker to connect to internal hosts, in violation of our security policy, and
would allow the attacker to exploit any security holes in the Finger service of which they are
aware. That’s a problem.

The fix is for the packet filter to mark each packet with the network interface it arrived on,
and to allow rules to match on this interface. Remember that a router is a device that has
two (or more) interfaces, where network links can be plugged in; a packet is received on
one interface, and is forwarded out on another interface. Suppose that we call the interface
attached to the internal network in, and the interface to the rest of the Internet out. Then
we can revise our ruleset as follows:

allow tcp *:*/out -> 1.2.3.4:25/in

5Here we are assuming that the attacker can correctly guess the Initial Sequence Number (ISN) that
the server chooses for this connection. As discussed previously in lecture, originally attackers could do so
because the ISN generation algorithm was based on the server consulting its local clock. Today, such numbers
are generated in an effectively random fashion, making this attack much harder. However, the discussion
here remains relevant when considering firewall rules for UDP traffic, since UDP traffic lacks such sequence
numbers and thus is much easier for an attacker to correctly spoof.

Lecture Notes by David Wagner 12 of 13



allow tcp *:*/in -> *:*/out

allow tcp *:*/out -> *:*/in (if ACK bit set)

drop * *:* -> *:*

This ruleset allows inbound packets only if they are destined to host 1.2.3.4, port 25 (rule
1) or if they have their ACK bit set (rule 3); all other inbound packets are dropped. This
is a clean solution that defeats the IP spoofing threat. It also happens to simplify ruleset
administration, as we no longer need to hardcode the list of IP addresses of internal machines.

Lecture Notes by David Wagner 13 of 13


	Security Policy
	Enforcement: Stateful Packet filters
	Other Kinds of Firewalls
	Principles
	Experience with Firewalls
	Optional: Stateless packet filters

