Week of September 4, 2019

Question 1 Software Vulnerabilities

 $(25 \min)$

For the following code, assume an attacker can control the value of basket passed into eval_basket. The value of n is constrained to correctly reflect the number of elements in basket.

The code includes several security vulnerabilities. Circle *three* such vulnerabilities in the code and **briefly explain** each of the three on the next page.

```
1 struct food {
            char name [1024];
3
            int calories;
 4
   };
5
   /* Evaluate a shopping basket with at most 32 food items.
      Returns the number of low-calorie items, or -1 on a problem. */
  int eval_basket(struct food basket[], size_t n) {
            struct food good [32];
            char bad [1024], cmd [1024];
10
            int i, total = 0, ngood = 0, size_bad = 0;
11
12
13
            if (n > 32) return -1;
14
            for (i = 0; i \le n; ++i) {
15
16
                      if (basket[i].calories < 100)
17
                               good[ngood++] = basket[i];
18
                      else if (basket[i].calories > 500)
                               size_t len = strlen(basket[i].name);
19
20
                               snprintf(bad + size_bad , len , "%s " , basket[i].name);
21
                               size_bad += len;
22
                      }
23
24
                      total += basket[i].calories;
25
            }
26
            \mathbf{if} \hspace{0.1cm} (\hspace{0.1cm} \mathtt{total} \hspace{0.1cm} > \hspace{0.1cm} 2500) \hspace{0.1cm} \{
27
28
                      const char *fmt = "health-factor --calories %d --bad-items %s";
                      fprintf(stderr, "lots of calories!");
29
30
                      snprintf(cmd, sizeof cmd, fmt, total, bad);
31
                      system (cmd);
32
33
34
            return ngood;
35
```

Reminders:

- snprintf(buf, len, fmt, ...) works like printf, but instead writes to buf, and won't write more than len 1 characters. It terminates the characters written with a '\0'.
- system runs the shell command given by its first argument.

1.	Explanation:
2.	Explanation:
3.	Explanation:

Mar	on 2 C Memory Defenses k the following statements as True or False and justify your solution. to discuss with students around you.	(10 min) Please feel
1.	Stack canaries cannot protect against all buffer overflow attacks in the s	stack.
2.	A format-string vulnerability can allow an attacker to overwrite a sar address even when stack canaries are enabled.	ved return
3.	If you have data execution prevention/executable space protection/NX tacker can write code into memory to execute.	bit, an at-
4.	If you have a non-executable stack and heap, buffer overflows are no ploitable.	longer ex-
5.	If you have a non-executable stack and heap, an attacker can use Return Programming.	n Oriented
6.	If you use a memory-safe language, buffer overflow attacks are impossib	le.
7.	ASLR, stack canaries, and NX bits all combined are insufficient to prevention of all buffer overflow attacks.	nt exploita-
Sho	ort answer!	
1.	What would happen if the stack canary was between the return addressaved frame pointer?	ss and the
2.	What if the canary was above the return address?	

	on 3 TCB (Trusted Computing Base) (10 min) ecture, we discussed the importance of a TCB and the thought that goes into deing it. Answer these following questions about the TCB:	
1.	What is a TCB?	
2.	What can we do to reduce the size of the TCB?	
3.	What components are included in the (physical analog of) TCB for the following security goals:	
	(a) Preventing break-ins to your apartment	
	(b) Locking up your bike	
	(c) Preventing people from riding BART for free	
	(d) Making sure no explosives are present on an airplane	_