
HW 0: Executable

CS 162

Due: September 4, 2018

Contents

1 Setup 2
1.1 GitHub and the Autograder . 2
1.2 Vagrant . 2

1.2.1 Windows (OS X and Linux users can skip this section) 3
1.2.2 Troubleshooting Vagrant . 3
1.2.3 Git Name and Email . 3
1.2.4 ssh-keys . 3
1.2.5 Repos . 4

1.3 Autograder . 5
1.4 Editing code in your VM . 5

1.4.1 Windows . 5
1.4.2 Mac OS X . 5
1.4.3 Linux . 5

1.5 Shared Folders . 5

2 Useful Tools 6
2.1 Git . 6
2.2 make . 6
2.3 gdb . 7
2.4 tmux . 7
2.5 vim . 7
2.6 ctags . 7

3 Your first assignment 8
3.1 make . 8
3.2 wc . 8
3.3 Executables and addresses . 8

3.3.1 gdb . 8
3.3.2 objdump . 9
3.3.3 map . 9

3.4 user limits . 10
3.5 Autograder & Submission . 10

1

CS 162 Fall 2018 HW 0: Executable

This semester, you will be using various tools in order to submit, build, and debug your code. This
assignment is designed to help you get up to speed on some of these tools.
This assignment is due 11:59 pm 9/4/2018

1 Setup

1.1 GitHub and the Autograder

Code submission for all projects and homework in the class will be handled via GitHub so you will need a
GitHub account. We will provide you with private repositories for all your projects. You must not use
your own public repositories for storing your code. Visit cs162.eecs.berkeley.edu/autograder1 to
register your GitHub account with the autograder.

1.2 Vagrant

We have prepared a Vagrant virtual machine image that is preconfigured with all the tools necessary to
run and test your code for this class. Vagrant is an tool for managing virtual machines. You can use
Vagrant to download and run the virtual machine image we have prepared for this course.

Note: If you do not want to set up Vagrant on your own machine, take a look at the CS162 VM
provisioner2 on GitHub for more options. You can run the VM on a variety of hypervisors, cloud
computing platforms, or even on bare metal hardware.

(If you are using Windows, these steps might not work – skip to the section below
labeled “Windows”)

1. Vagrant depends on VirtualBox (an open source virtualization product) so first you will need to
download and install the appropriate version from the VirtualBox website3. We will talk in class
about virtual machines, but you can think of it as a software version of actual hardware.

2. Now install the appropriate version of Vagrant from the Vagrant website4.

3. Once Vagrant is installed, type the following into your terminal:

$ mkdir cs162-vm

$ cd cs162-vm

$ vagrant init cs162/fall2018

$ vagrant up

$ vagrant ssh

These commands will download our virtual machine image from our server and start a ssh session.
Note the “up” command will take a while, and requires an Internet connection.

4. You need to run all vagrant commands from the cs162-vm directory you created earlier. Do NOT
delete that directory, or vagrant will not know how to manage the VM you created.

5. You can run vagrant halt to stop the virtual machine. If this command does not work, make
sure you are running it from your host machine, not inside SSH. To start the virtual machine the
next time, you only need to run vagrant up and vagrant ssh. All of the other steps do not need
to be repeated.

1https://cs162.eecs.berkeley.edu/autograder
2https://github.com/Berkeley-CS162/vagrant/
3https://www.virtualbox.org/wiki/Downloads
4http://www.vagrantup.com/downloads.html

2

https://cs162.eecs.berkeley.edu/autograder
https://github.com/Berkeley-CS162/vagrant/
https://github.com/Berkeley-CS162/vagrant/
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html

CS 162 Fall 2018 HW 0: Executable

1.2.1 Windows (OS X and Linux users can skip this section)

Since windows does not support ssh, the “vagrant ssh” command from the above steps will cause an error
message prompting you to download Cygwin or something similar that supports an ssh client. Here5 is
a good guide on setting up Vagrant with Cygwin in windows.

Alternatively, it is possible to use PuTTY instead of Cygwin, but this might be slightly more work
to set up.

If you get an error about your VM bootup timing out, you may need to enable VT-x (virtualization)
on your CPU in BIOS.

1.2.2 Troubleshooting Vagrant

If “vagrant up” fails, try running “vagrant provision” and see if it fixes things. As a last resort, you
can run “vagrant destroy” to destroy the VM. Then, start over with “vagrant up”.

1.2.3 Git Name and Email

Run these commands to set up your Name and Email that will be used for your Git commits. Make
sure to replace “Your Name” and “your email@berkeley.edu” with your REAL name and REAL email.

$ git config --global user.name "Your Name"

$ git config --global user.email "your_email@berkeley.edu"

1.2.4 ssh-keys

You will need to setup your ssh keys in order to authenticate with GitHub from your VM.

New GitHub Users

SSH into your VM and run the following:

$ ssh-keygen -N "" -f ~/.ssh/id_rsa

$ cat ~/.ssh/id_rsa.pub

The first command created a new SSH keypair. The second command displayed the public key on
your screen. You should log in to GitHub and go to github.com/settings/ssh6 to add this SSH public
key to your GitHub account. The title of your SSH keypair can be “CS 162 VM”. The key should start
with “ssh-rsa” and end with “vagrant@development”.

Experienced GitHub Users

If you already have a GitHub SSH keypair set up on your local machine, you can use your local ssh-
agent to utilize your local credentials within the virtual machine via ssh agent forwarding. Simply use
vagrant ssh to ssh into your machine. The Vagrant should enable SSH agent forwarding automatically.
If this doesn’t work, you can also use the instructions in the previous “New GitHub Users” section.

5https://gist.github.com/rogerhub/456ae31427aafe5b70f7
6https://github.com/settings/ssh

3

https://gist.github.com/rogerhub/456ae31427aafe5b70f7
https://github.com/settings/ssh

CS 162 Fall 2018 HW 0: Executable

1.2.5 Repos

You will have access to two private repositories in this course: a personal repository for homework, and
a group repository for projects. We will publish skeleton code for homeworks in Berkeley-CS162/ta7

and we will publish skeleton code for group projects in Berkeley-CS162/group08. These two skeleton
code repositories are already checked out in the home folder of your VM, inside ~/code/personal and
~/code/group.

You will use the “Remotes” feature of Git to pull code from our skeleton repos (when we release
new skeleton code) and push code to your personal and group repos (when you submit code). The Git
Remotes feature allows you to link GitHub repositories to your local Git repository. We have already
set up a remote called “staff” that points to our skeleton code repos on GitHub, for both your personal
and group repo. You will now add your own remote that points to your private repo so you can submit
code.

You should have received the link to your personal private GitHub repo when you registered with
the autograder earlier. Add a new remote by doing the following steps in your VM:

1. First cd into your personal repository

cd ~/code/personal

2. Then visit your personal repo on GitHub and find the SSH clone URL. It should have the form
“git@github.com:Berkeley-CS162/...”

3. Now add the remote

git remote add personal YOUR_GITHUB_CLONE_URL

4. You can get information about the remote you just added

git remote -v

git remote show personal

5. Pull the skeleton, make a test commit and push to personal master

git pull staff master

touch test_file

git add test_file

git commit -m "Added a test file."

git push personal master

In this course, “master” is the default Git branch that you will use to push code to the autograder.
You can create and use other branches, but only the code on your master branch will be graded.

6. Within 30 minutes you should receive an email from the autograder. (If not, please notify the
instructors via Piazza). Check cs162.eecs.berkeley.edu/autograder9 for more information.

7https://github.com/Berkeley-CS162/ta/
8https://github.com/Berkeley-CS162/group0/
9https://cs162.eecs.berkeley.edu/autograder

4

https://github.com/Berkeley-CS162/ta/
https://github.com/Berkeley-CS162/group0/
https://cs162.eecs.berkeley.edu/autograder

CS 162 Fall 2018 HW 0: Executable

1.3 Autograder

Here are some important details about how the autograder works:

• The autograder will automatically grade code that you push to your master branch, UNLESS the
assignment you are working on is LATE.

• If your assignment is late, you can still get it graded, but you will be using slip days. You can
request late grading using the autograder’s web interface at cs162.eecs.berkeley.edu/autograder10.

• Your final score will be the best score that you received in any build. So, even if you push code
that fails more autograder tests than before, it will not decrease your score.

• If your score does not improve when you push new code, it will not affect your slip days. So, if
you request a build after the deadline that does not improve your score, you will not have to use
slip days.

1.4 Editing code in your VM

The VM contains a SMB server that lets you edit files in the vagrant user’s home directory. With the
SMB server, you can edit code using text editors on your host and run git commands from inside the
VM. This is the recommended way of working on code for this course, but you are free to do
whatever suits you best. One possibility is just using a non-graphical text editor in an SSH session.

1.4.1 Windows

1. Open the file browser, and press Ctrl L to focus on the location bar.

2. Type in \\192.168.162.162\vagrant and press Enter.

3. The username is vagrant and the password is vagrant.

You should now be able to see the contents of the vagrant user’s home directory.

1.4.2 Mac OS X

1. Open Finder.

2. In the menu bar, select Go → Connect to Server....

3. The server address is smb://192.168.162.162/vagrant.

4. The username is vagrant and the password is vagrant.

You should now be able to see the contents of the vagrant user’s home directory.

1.4.3 Linux

Use any SMB client to connect to the /vagrant share on 192.168.162.162 with the username vagrant
and password vagrant. Your distribution’s file browser probably has support for SMB out of the box,
so look online for instructions about how to use it.

1.5 Shared Folders

The /vagrant directory inside the virtual machine is connected to the home folder of your host machine.
You can use this connection if you wish, but the SMB method in the previous section is recommended.

10https://cs162.eecs.berkeley.edu/autograder

5

https://cs162.eecs.berkeley.edu/autograder

CS 162 Fall 2018 HW 0: Executable

2 Useful Tools

Before continuing, we will take a brief break to introduce you to some useful tools that make a good
fit in any system hacker’s toolbox. Some of these (git, make) are MANDATORY to understand in that
you won’t be able to compile/submit your code without understanding how to use them. Others such as
gdb or tmux are productivity boosters; one helps you find bugs and the other helps you multitask more
effectively. All of these come pre-installed on the provided virtual machine.

Note: We do not go into much depth on how to use any of these tools in this document. Instead,
we provide you links to resources where you can read about them. We highly encourage this reading
even though not all of it is necessary for this assignment. We guarantee you that each of these will come
in handy throughout the semester. If you need any additional help, feel free to ask any of the TA’s at
office hours!

2.1 Git

Git is a version control program that helps keep track of your code. GitHub is only one of the many
services that provide a place to host your code. You can use git on your own computer, without GitHub,
but pushing your code to GitHub lets you easily share it and collaborate with others.

At this point, you have already used the basic features of git, when you set up your repos. But an
understanding the inner workings of git will help you in this course, especially when collaborating with
your teammates on group projects.

If you have never used git or want a fresh start, we recommend you start here11. If you sort of
understand git, this presentation12 we made and this website13 will be useful in understanding the inner
workings a bit more.

2.2 make

make is a utility that automatically builds executable programs and libraries from source code by reading
files called Makefiles, which specify how to derive the target program. How it does this is pretty cool: you
list dependencies in your Makefile and make simply traverses the dependency graph to build everything.
Unfortunately, make has very awkward syntax that is, at times, very confusing if you are not properly
equipped to understand what is actually going on.

A few good tutorials are here14 and here15. And of course the official GNU documentation (though
it may be a bit dense) here16.

For now we will use the simplest form of make: without a Makefile. (But you will want to learn
how to build decent Makefiles before long!) You can compile and link wc.c by simply running:

$ make wc

This created an executable, which you can run. Try

$./wc wc.c

How is this different from the following? (Hint: run “which wc”.)

$ wc wc.c

11http://git-scm.com/book/en/Getting-Started
12http://goo.gl/cLBs3D
13http://think-like-a-git.net/
14http://wiki.wlug.org.nz/MakefileHowto
15http://mrbook.org/blog/?s=make
16http://www.gnu.org/software/make/manual/make.html

6

http://git-scm.com/book/en/Getting-Started
http://goo.gl/cLBs3D
http://think-like-a-git.net/
http://wiki.wlug.org.nz/MakefileHowto
http://mrbook.org/blog/?s=make
http://www.gnu.org/software/make/manual/make.html

CS 162 Fall 2018 HW 0: Executable

Your first assignment is going to be to modify wc.c, so that it implements word count according
to the specification of “man wc”, except that it does not need to support any flags and only needs to
support a single input file, (or STDIN if none is specified). Beware that wc in OS X behaves differently
from wc in Ubuntu. We will expect you to follow the behavior of wc in Ubuntu.

2.3 gdb

Debugging C programs is hard. Crashes don’t give you nice exception messages or stack traces by
default. Fortunately, there’s gdb. If you compile your programs with a special flag -g then the output
executable will have debug symbols, which allow gdb to do its magic. If your run your C program inside
gdb it will allow you to not only look get a stack trace, but inspect variables, change variables, pause
code and much more!

Normal gdb has a very plain interface. So, we have installed cgdb for you to use on the virtual
machine, which has syntax highlighting and few other nice features. In cgdb, you can use i and ESC to
switch between the upper and lower panes.

gdb can start new processes and attach to existing processes (which will be useful when debugging
your project.)

This17 is an excellent read on understanding how to use gdb.
Again, the official documentation18 is also good, but a bit verbose.
Take a moment to begin working on your wc. Provide the -g flag when you compile your program

with gcc. Start the program under gdb. Set a break point at main. Run to there. Try out various
commands. Figure out how to pass command line arguments. Add local variables and try probing their
values. Learn about step, next, and break.

2.4 tmux

tmux is a terminal multiplexer. It basically simulates having multiple terminal tabs, but displays them
in one terminal session. It saves having to have multiple tabs of sshing into your virtual machine.

You can start a new session with tmux new -s <session_name>

Once you create a new session, you will just see a regular terminal. Pressing ctrl-b + c will create
a new window. ctrl-b + n will jump to the nth window.

ctrl-b + d will “detach” you from your tmux session. Your session is still running, and so are any
programs that you were running inside it. You can resume your session using tmux attach -t <session_name>.
The best part is this works even if you quit your original ssh session, and connect using a new one.

Here19 is a good tmux tutorial to help you get started.

2.5 vim

vim is a nice text editor to use in the terminal. It’s well worth learning. Here20 is a good series to get
better at vim. Others may prefer emacs. Whichever editor you choose, you will need to get proficient
with an editor that is well suited for writing code.

If you want to use Sublime Text, Atom, CLion, or another GUI text editor, look at 1.4 Editing code
in your VM, which shows you how to access your VM’s filesystem from your host.

2.6 ctags

ctags is a tool that makes it easy for you to navigate large code bases. Since you will be reading a lot of
code, using this tool will save you a lot of time. Among other things, this tool will allow you to jump to

17http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html
18https://sourceware.org/gdb/current/onlinedocs/gdb/
19http://danielmiessler.com/study/tmux/
20http://derekwyatt.org/vim/tutorials/

7

http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html
https://sourceware.org/gdb/current/onlinedocs/gdb/
http://danielmiessler.com/study/tmux/
http://derekwyatt.org/vim/tutorials/

CS 162 Fall 2018 HW 0: Executable

any symbol declaration. This feature together with your text editor’s go-back-to-last-location feature is
very powerful.

Instructions for installing ctags can be found for vim here21 and for sublime here22. If you don’t use
vim or sublime, ctags still is probably supported on your text editor although you might need to search
installation instructions yourself.

3 Your first assignment

3.1 make

You have probably been using gcc to compile your programs, but this grows tedious and complicated as
the number of files you need to compile increases. For this assignment, you will need to write a Makefile

that compiles main.c, wc.c, and map.c when make is run (you may want to add the -g gcc flag to this
step). It may also help to write a clean target (for make clean) to remove your binaries, but this is
optional. If all of this is new to you please read 2.2 make.

3.2 wc

We are going to use wc.c to get you thinking once again in C, with an eye to how applications utilize
the operating system - passing command line arguments from the shell, reading files, and standard file
descriptors. All of these things you encountered in CS61C, but they will take on new meaning in CS162.

Your first task to write a clone of the tool wc, which counts the number of lines, words, and characters
inside a particular text file. You can run the official wc in your VM to see what your output should
look like, and try to mimic its basic functionality in wc.c (don’t worry about the flags or spacing in the
output).

You only need to support running “wc FILE_NAME” and running “wc” without any arguments. If wc
is run with no arguments, the program should read data from standard input.

While you are working on this take the time to get some experience with gdb. Use it to step through
your code and examine variables.

Beware that wc in OS X behaves differently from wc in Ubuntu. We will expect you to follow the
behavior of wc in Ubuntu.

3.3 Executables and addresses

Now that you have dusted off your C skills and gained some familiarity with the CS 162 tools, we want
you to understand what is really inside of a running program and what the operating system needs to
deal with.

3.3.1 gdb

Load up your wc executable in gdb with a single input file command line argument, set a breakpoint at
main, start your program, and continue one line at a time until you are in the middle of your program’s
execution. Take a look at the stack using where or backtrace (bt).

While you are looking through gdb, think about the following questions and put your answers in the
file gdb.txt.

• What is the value of argv? (hint: print argv)

• What is pointed to by argv? (hint: print argv[0])

21http://ricostacruz.com/til/navigate-code-with-ctags.html
22https://github.com/SublimeText/CTags

8

http://ricostacruz.com/til/navigate-code-with-ctags.html
https://github.com/SublimeText/CTags

CS 162 Fall 2018 HW 0: Executable

• What is the address of the function main?

• Try info stack. Explain what you see.

• Try info frame. Explain what you see.

• Try info registers. Which registers are holding aspects of the program that you recognize?

3.3.2 objdump

There is more to the executable than meets the eye. Let’s look down inside. Run “objdump -x -d wc”.
You will see that your program has several segments, names of functions and variables in your

program correspond to labels with addresses or values. And the guts of everything is chunks of stuff
within segments.

In the objdump output these segments are under the section heading. There’s actually a slight
nuance between these two terms which you can read more about online.

While you are looking through the objdump try and think about the following questions and put the
answers in the file objdump.txt.

• What file format is used for this binary? And what architecture is it compiled for?

• What are some of the names of segment/sections you find?

• What segment/section contains main (the function) and what is the address of main? (It should
be the same as what you saw in gdb)

• Do you see the stack segment anywhere? What about the heap? Explain.

3.3.3 map

OK, now you are ready to write a program that reveals its own executing structure. The second file in
hw0, map.c provides a rather complete skeleton. You will need to modify it to get the addresses that
you are looking for. The output of the solution looks like the following (the addresses may be different).

_main @ 0x4005c2

recur @ 0x40057d

_main stack: 0x7fffda11f73c

static data: 0x601048

Heap: malloc 1: 0x671010

Heap: malloc 2: 0x671080

recur call 3: stack@ 0x7fffda11f6fc

recur call 2: stack@ 0x7fffda11f6cc

recur call 1: stack@ 0x7fffda11f69c

recur call 0: stack@ 0x7fffda11f66c

Now think about the following questions and put the answers in map.txt.

• Use objdump with the -D flag on the map executable. Which of the addresses from the output of
running ./map are defined in the executable, and which segment/section is each defined in?

• Make a list of the important segments, and what they are used for (look up their names on the
Internet if you don’t know).

• What direction is the stack growing in?

• How large is the stack frame for each recursive call?

9

CS 162 Fall 2018 HW 0: Executable

• Where is the heap? What direction is it growing in?

• Are the two malloc()ed memory areas contiguous? (e.g. is there any extra space between their
addresses?)

3.4 user limits

The operating system needs to deal with the size of the dynamically allocated segments: the stack and
heap. How large should these be? Poke around a bit to find out how to get and set these limits on linux.
Modify main.c so that it prints out the maximum stack size, the maximum number of processes, and
maximum number of file descriptors. Currently, when you compile and run main.c you will see it print
out a bunch of system resource limits (stack size, heap size, ..etc). Unfortunately all the values will be
0. Your job is to get this to print the ACTUAL limits (use the soft limits, not the hard limits). (Hint:
run “man getrlimit”)

You should expect output similar to this:

stack size: 8388608

process limit: 2782

max file descriptors: 1024

3.5 Autograder & Submission

To push to autograder do:

cd ~/code/personal/hw0

git status

git add wc.c main.c map.c gdb.txt objdump.txt map.txt Makefile

git commit -m "Finished my first CS162 assignment"

git push personal master

This saves your work and it gives the instructors a chance to see the progress you are making.
Congratulations for not waiting till the last minute.

Within a few minutes you should receive an email from the autograder. (If not, please notify the
instructors via Piazza). Check cs162.eecs.berkeley.edu/autograder23 for more information.

Your work on gdb.txt, objdump.txt, and map.txt will not be graded by the autograder and instead
will be graded manually based on effort.

Hopefully after this you are slightly more comfortable with your tools. You will need them for the
long road ahead!

23https://cs162.eecs.berkeley.edu/autograder

10

https://cs162.eecs.berkeley.edu/autograder

	Setup
	GitHub and the Autograder
	Vagrant
	Windows (OS X and Linux users can skip this section)
	Troubleshooting Vagrant
	Git Name and Email
	ssh-keys
	Repos

	Autograder
	Editing code in your VM
	Windows
	Mac OS X
	Linux

	Shared Folders

	Useful Tools
	Git
	make
	gdb
	tmux
	vim
	ctags

	Your first assignment
	make
	wc
	Executables and addresses
	gdb
	objdump
	map

	user limits
	Autograder & Submission

