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Multi-Level Feedback Scheduling

> quantum = 8
L\\Long-Running Compute
Tasks Demoted to

Lb" quantum = 16 ——I/ LOW Prior‘ity
—p‘A FCFS

* Another method for exploiting past behavior (first use in CTSS)
— Multiple queues, each with different priority
» Higher priority queues often considered “foreground’” tasks
— Each queue has its own scheduling algorithm
» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest: I ms, next: 2ms, next: 4ms, etc)

* Adjust each job’s priority as follows (details vary)
— Job starts in highest priority queue
— If timeout expires, drop one level

— If timeout doesn't expire, push up one level (or to top)
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Sc

neduling Details

>
=

quantum = 8

Lb" quantum = 16

1

—»‘4 FCFsS

* Result approximates SRTF:

— CPU bound jobs drop like a rock

— Short-running /O bound jobs stay near top

* Scheduling must be done between the queues

— Fixed priority sched

uling:

L\\Long-Running Compute

Tasks Demoted to
Low Priority

» serve all from highest priority, then next priority, etc.

— Time slice:

» each queue gets a certain amount of CPU time
» e.g., /0% to highest, 20% next, 0% lowest
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Sc

neduling Details

>
=

quantum = 8

Lb" quantum = 16

1

—P‘A FCFsS

L\\Long-Running Compute

Tasks Demoted to
Low Priority

« Countermeasure: user action that can foll intent of OS designers

— For multilevel feedback, put in a bunch of meaningless I/O to keep

job’s priority high

— Of course, If everyone did this, wouldn't work!

* Example of Othello program:

— Playing against competitor, so key was to do computing at higher
priority the competitors.

» Put in printf's, ran much faster!
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Real-Time Scheduling (RTS)

 Efficiency is important but predictability is essential:

— We need to predict with confidence worst case response times for systems
— In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
— In conventional systems, performance is:

» System/throughput oriented with post-processing (... wait and see ...)

— Real-time is about enforcing predictability, and does not equal fast computing!!!
* Hard Real-Time

— Attempt to meet all deadlines

— EDF (Earliest Deadline First), LLF (Least Laxity First),
RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

* Soft Real-Time
— Attempt to meet deadlines with high probability
— Minimize miss ratio / maximize completion ratio (firm real-time)
— Important for multimedia applications
— CBS (Constant Bandwidth Server)
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Example: Workload Characteristics

* Tasks are preemptable, independent with arbrtrary arrival
(=release) times

* Tasks have deadlines (D) and known computation times (C)

¢ Example Setup:

Tl = D l

AC,
T3 P l

A ("i D4 l

T4
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Example: Round-Robin Scheduling Doesn’t Work
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Tl

T3

T4

Missed
deadline!!
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Earliest Deadline First (EDF)

 Tasks periodic with period P and computation C in each period:
(P, C)

* Preemptive priority-based dynamic scheduling

* Each task is assigned a (current) priority based on how close the
absolute deadline Is

* The scheduler always schedules the active task with the closest
absolute deadline

:(4’1). — 1 - : . — 1 - : 1 .»
n-c I 1 .
1=021] — - - L

0 5 |0 |5
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A Final Word On Scheduling

* When do the detalls of the scheduling policy and fairness really matter?
— When there aren’t enough resources to go around

* When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay
for itself in iImproved response time

» Assuming you're paying for worse response time
in reduced productivity, customer angst, etc...

» Might think that you should buy a faster X when
X is utilized 100%, but usually, response time
goes to Infinity as utilization=>100%

aun
asuodsa

%001

Utilization

* An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear’” portion of the load
curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve
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TODAY'S LECTURE
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Virtualizing Resources

* Physical Reality: Different Processes/Threads share the same hardware
— Need to multiplex CPU (done)
— Need to multiplex use of Memory (Today)
— Need to multiplex disk and devices (later in term)

* Why worry about memory sharing?

— The complete working state of a process and/or kernel is defined by its
data in memory (and registers)

— Consequently, two different processes cannot use the same memory
» Physics: two different data cannot occupy same locations in memory
— May not want different threads to have access to each other's memory
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Next Objective

* Dive deeper into the concepts and mechanisms of memory
sharing and address translation

* Enabler of many key aspects of operating systems

— Protection
. . Yle Sys
— Multi-programming € tem, y
- &
— |solation & o)
nc
~ M t 3 O g
emory resource managemen g " > =
- o O intro \\V c
— /O efficiency . &
2y, & P @Q
— Sharing % . 9) fouen™® &
, , )
— Inter-process communication %@%@, o>
Byqeyed

— Demand paging
* Today: Linking, Segmentation
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Recall: Single anc

Multithreaded Processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

<«—— thread

thread —» ;

single-threaded process

* Threads encapsulate concurrency

multithreaded process

— "Active” component of a process

» Address spaces encapsulate protection
— Keeps buggy program from trashing the system
— "“Passive’” component of a process
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Important Aspects of Memory Multiplexing (1/2)

 Protection: prevent access to private memory of other
processes

— Kernel data protected from User programs
— Programs protected from themselves

— May want to give special behavior to different memory regions
(Read Only, Invisible to user programs, etc)

» Controlled overlap: sometimes we want to share memory across
Drocesses.

— E.g,, communication across processes, share code
— Need to control such overlap

8/10/18 CS162 ©UCB Fall 2018 Lec 12.15



Important Aspects of Memory Multiplexing (2/2)

* [ranslation:

— Ability to translate accesses from one address space (virtual) to a
different one (physical)

— When translation exists, processor uses virtual addresses,
physical memory uses physical addresses
— Side effects:
» Can be used to give uniform view of memory to programs
» Can be used to provide protection (e.g., avoid overlap)
» Can be used to control overlap

8/10/18 CS162 ©UCB Fall 2018 Lec 12.16



Recall: Loading

Threads
Address Spaces Windows
Processes Files Sockets

Software OS Hardware Virtualization

Hardware ISA Memory

i Protection

Boundary

Processor

Networks

Displays

- Inputs
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Binding of Instructions and Data to Memory

Process view of memory

ﬂ;;;alz

start:

loop:

dw

1w
jal

addi ri1, ri,

bnz

Qﬂi?ckit: »

32

rl,0(datal)
checkit

-1
rl, loop

~
[

/

8/10/18

0x300 =
Ox0Co =
0x300

Physic

GXGBGU__U\\V///G

Assume 4byte words

4 * Ox0C0
0000 1100 0000
0011 0000 0000

0x0900 8(C2000CH

0x0904
0x0908
0x090C

0Co0

(5)4
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Binding of Instructions and Data to Memory

Process view of memory

datal:

dw

1w
jal

32

rl,0(datal)
checkit

addi ri1, ri1, -1

bnz

Qﬂi?ckit: »

rl, loop

~
[

/

8/10/18

Physical addresses

0x0300

0x0900
0x0904
0x0908
0x090C

(5)4

00000020

0Co09
2021FFFF
14200242
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0x0000

0x0300

0x0900

8C2000C0O Q

OXFFFF

Physical
Memory

00000020

8C2000C0
0C000340
2021FFFF
14200242
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Second copy of program from previous example

Process view of memory

ﬁg;alz

start:

loop:

dw

1w
jal

bnz

c\heckit:

32 \

rl,0(datal)

checkit
addi ri1, ri1, -1 E

rl, re, loop

Physical addresses

0x0300

0Xx0900
Ox0904
0x0908

0x090C

.

8/10/18

OXx0A00

00000020

8C2000C0
0C000280
2021FFFF
14200242

Need address translation!

CS162 ©UCB Fall 2018

Physical
Memory

0x0000

0x0300

oxoo00| ApPP X

?

=)

OXFFFF
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Second copy of program from previous example

Physical
Memory
0x0000
Ox0300
Process view of memory Processor view of memory
fata1: daw 32 \ ox1300 ooooanzo | 09| APP X
start: 1w ril,e(datal) OX1908 8C2004C0
jal  checkit I: 0x1904 0C00 6x1300 ["90000020
loop:  addi rl, ri, -1 0x1908 2021FFFF
bnz  rl, re, loop 0x190C 14200642
. ~ oxfo0e | 8C2004C0
fffckit: . 4// Ox 0C000680
2021FFFF
* One of many possible translations! 14200642
* Where does translation take place? OXFFFF

Compile time, Link/Load time, or Execution time?
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Multi-step Processing of a Program for Execution

* Preparation of a program for execution
involves components at:

— Compile time (e, “gcc”)
— Link/Load time (UNIX "Id" does link)
— Execution time (e.g., dynamic libs)

e Addresses can be bound to final values
anywhere In this path

— Depends on hardware support
— Also depends on operating system

* Dynamic Libraries
— Linking postponed until execution
— Small piece of code, stub, used to locate

appropriate memory-resident library routine

— Stub replaces itself with the address of the

8/10/18

routine, and executes routine

CS162 ©UCB Fall 2018

source
program

compiler or
assembler

compile
time

object
module
other
object
modules
linkage
editor
load load
module time
system
library
loader
dynamicall
loaded i
system ¥ -
library i
in-memory ior
dynamic binary . ?i)r;?g l;:luor:
linking memory time)
image
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Recall: Uniprogramming

* Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory since
only one application at a time . g =

— Application can access any physical address ==
OxFFFFFFFF

Operating
System

Valid 32-bit
Addresses

Application

0x00000000

— Application given illusion of dedicated machine by giving it
reality of a dedicated machine
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Multiprogramming (primitive stage)
* Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating
System
Application2 0x00020000
Application|
0x00000000

— Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (... till Windows 3.x, 957)

* With this solution, no protection: bugs in any program can cause
other programs to crash or even the OS
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Multiprogramming (Version with Protection)

* Can we protect programs from each other without
translation?

OXFFFFFFFF
Operating
System —

« | LimitAddr=0x10000 |
| =

Application? 0x00020000 | BaseAddr=0x20000 |
Application|

0x00000000

— Yes: use two special registers BaseAddr and LimitAddr to prevent
user from straying outside designated area

» If user tries to access an illegal address, cause an error

— Durning switch, kernel loads new base/limit from PCB (Process
Control Block)

» User not allowed to change base/limit registers
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Recall: General Address translation

Virtual Physical
Addresses Addresses

Untranslated read or write

* Recall: Address Space:
— All the addresses and state a process can touch
— Each process and kernel has different address space

* Consequently, two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)
— Translation box (MMU) converts between the two views

* Translation makes it much easier to implement protection

— If task A cannot even gain access to task B's data, no way for A to
adversely affect B

* With translation, every program can be linked/loaded into

same region of user address space
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Simple Example: Base and Bounds (CRAY- I)

Base

Virtual
Address

‘ CPU DRAM ‘

Bound Physical
(Limit) Address

No: Error!
* Could use base/bounds for dynamic address translation —
translation happens at execution:

— Alter address of every load/store by adding “base”

— Generate error If address bigger than limit

* This gives program the illusion that 1t is running on Its own
dedicated machine, with memory starting at O

— Program gets continuous region of memory

— Addresses within program do not have to be relocated when

program placed in different region of DRAM
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Issues with Simple B&B Method

process 6 process 6 process 6 process 6

process 5 process 5 process 5 | I
process 9 process 9 process 11

process 2 |:> :> :> process 10

0OS 0OS 0OS OS

* Fragmentation problem over time

— Not every process is same size =» memory becomes fragmented

* Missing support for sparse address space
— Would like to have multiple chunks/program (Code, Data, Stack)

* Hard to do inter-process sharing
— Want to share code segments when possible
— Want to share memory between processes

— Helped by providing multiple segments per process
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More Flexible Segmentation

subroutine

symbol
table

Sqrt

main
program

logical address

|
4
)
3
user view of physical
....... memory space ... .memory space:

* Logical View: multiple separate segments

— Typical: Code, Data, Stack

— Others: memory sharing, etc

* Fach segment is given region of contiguous memory
— Has a base and limit
— Can reside anywhere in physical memory

8/10/18
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Implementation of Multi-Segment Model

Virtual offset Error
Address Limit0
Limit|
Base3 | Limit3 hysical
Base4 | Limit4 |V Address
Base5 | Limit5 | N
Base6 | Limité | N
Base7 | Limit7 |V Check Valid
* Segment map resides in processor '
— Segment number mapped into base/limit pair Access
— Base added to offset to generate physical address Error

— Error check catches offset out of range
* As many chunks of physical memory as entries

— Segment addressed by portion of virtual address

— However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.

* What is “V/N" (valid / not valid)?

— Can mark segments as invalid; requires check as well
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Intel x86 Special Registers

15

Tidex f RPL

RPL = Requestor Piivilege Level

TL=Table Indicator
(0=GDT,1=LD0OT)

[hdex =Ihdex into table

Protected Mode segioent selector

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

8/10/18

80386 Special Registers

Segunent tegisiels

Code Seg. Data Seg.
15 cs 0 15 DS 0
Stack Seg. Exita Seg.
15 SS 0 15 ES 0
Exita Seg Extra. Seg
15 ES o] 15 GS 0
N[O |o|D|L|T|[s]|Z A P C
X|T|pL |EF|F|EF|F|E|F|[X|F|X|F|X|F
15 14 13121110 9 8 72 6 S 4+ 3 2 1 0
P E[T|TMIP
& = s Is [¢ | | CRO Unused CR1
3130 S 43210 31 O Flags
Page Fault Page Ditecior Not
Linest Address CR2 Base Registe? Used| CR3
31 o] 0

PG=Paging Enable
ET=Ewulation Ty

TS=Task Switch
EM=Einulate Coplocessol

M P=hiath coprocessol plesent
PE=Potected Mode enable

CS162 ©UCB Fall 2018

3;{=Rcseh'ed

NT=Nested Task
LOPL=L/O Purivilege Level
OF=Oveiflow Flag
DE=Direction Flag
IF:Ihtel'l'uEgi Flag
TE=Ttap Flag
SE=Sign Flag
ZBE=Zero Flag
AF=4umilaty Flag
PE=Pauity Flag
CE=Carty Flag
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit
- Offset 0 (code) 0x4000 | 0x0800
15 14 13 | (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) |OxFOOO0 |[0xI1000
3 (stack) 0x0000 | 0x3000
0x0000 0x0000
0x4000
0x8000
0xC000
Virtual Physical

Address Space Address Space
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit
- Offset | 0 (code) 0x4000 | 0x0800
15 14 13 0 | (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) |OxFOOO0 |[0xI1000
3 (stack) 0x0000 | 0x3000
0x0000 Segip =" 0x0000
0x4000
0x8000
0xC000
Virtual Physical

Address Space

8/10/18

Address Space

CS162 ©UCB Fall 2018
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit
- Offset 0 (code) 0x4000 | 0x0800
15 14 13 | (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) |OxFOOO0 |[0xI1000
3 (stack) 0x0000 | 0x3000
0x0000 Segip =" 0x0000
SeglD = 1 0x4000 Might
0x4000 > 0x4800 be shared
> 0x5C00
0x8000
Space for
0xC000 Other Apps
Shared with
Other Apps
Virtual Physical

Address Space Address Space
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit
- Offset 0 (code) 0x4000 | 0x0800
15 14 13 | (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) |OxFOOO0 |[0xI1000
3 (stack) 0x0000 | 0x3000
0x0000 Segip =" 0x0000
SeglD = 1 0x4000 Might
0x4000 > 0x4800 be shared
> 0x5C00
0x8000
Space for
0xC000 Other Apps
0xF000 Shared with
Other Apps
Virtual Physical

Address Space Address Space
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Administrivia

Deadline for [t midterm regrades: Tomorrow, 10/9
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BREAK
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Example of Segment Translation (16b address)

0x240 main: la $a9, varx

0x244 jal strlen Seg ID # Base Limit

ox360  strien: 1i . $vo, o scount |[0(code) [0x4000 |0x0800

ox364  loop: b  $te, ($a0) | (data) 0x4800 | Ox1400

0x368 beq $ro,$to, done 2 (shared) | O0xF000 |0xI1000

3 (stack) 0x0000 | 0x3000
0x4050 varx dw 0x314159

Let's simulate a bit of this code to see what happens (PC=0x240):
|, Fetch 0x240. Virtual segment #? O; Offset! 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC
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Example of Segment Translation (16b address)

0x240 main: la $a@, varx
0x244 jal strlen Seg ID # Base Limit

ox360  strien: 1i . $vo, o scount |[0(code) [0x4000 |0x0800

ox364  loop: b  $te, ($a0) | (data) 0x4800 | Ox1400

0x368 beq $ro,$to, done 2 (shared) | O0xF000 |0xI1000

3 (stack) 0x0000 | 0x3000
0x4050 varx dw 0x314159

Let's simulate a bit of this code to see what happens (PC=0x240):
|, Fetch 0x240. Virtual segment #? O; Offset! 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch Ox244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC
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Example of Segment

ranslation (16b address)

la $a@, varx
jal strlen

0x240 main:

0x244
0x368 beq $ro,$to, done

0x4050 varx dw 0x314159

Ox360 strlen: 1i $vO, © ;count
0x364 oop: D $t0, (%ad

Seg ID # Base Limit

0 (code) 0x4000 | 0x0800

| (data) | 0x4800 |0x1400

2 (shared) | O0xF000 |0xI1000

3 (stack) | 0x0000 | 0x3000

Let's simulate a bit of this code to see what happens (PC=0x240):
|, Fetch 0x240. Virtual segment #? O; Offset! 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”

Move 0x4050 — $a0, Move PC+4—PC

Fetch Ox244. Translated to Physical=0x4244. Get “jal strlen”

Move 0x0248 — $ra (return address!), Move 0x0360 — PC

Move 0x0000 — $vO, Move PC+4—PC

8/10/18
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Fetch Ox360. Translated to Physical=0x4360. Get “li $v0, 0"
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Example of Segment

ranslation (16b address)

0x0240 main: la $a0@, varx

0x0244 jal strlen SegID# | Base Limit

Gxg36@ strlen: 1i $vO, © ;count Yieod) Db

0x0364 loop: b $te, (%a0) | (data) 0x4800 | 0x1400

9X0368 beq »ro,»pto, done 2 (shared) |0xF000 |0OxI000
3 (stack) 0x0000 | 0x3000

0x4050 varx dw 0x314159

Let's simulate a bit of this code to see what happens (PC=0x0240):

8/10/18

Fetch 0x0240. Virtual segment #! 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”

Move 0x4050 — $a0, Move PC+4—PC

Fetch 0x0244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

Fetch Ox0360. Translated to Physical=0x4360. Get “li $v0, 0"
Move 0x0000 — $vO, Move PC+4—PC

Fetch Ox0364. Translated to Physical=0x4364. Get “Ib $t0, ($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050

Translate Ox4050 (0100 0000 0101 000). Virtual segment #? |; Offset! Ox50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—%t0, Move PC+4—PC
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Observations about Segmentation

Virtual address space has holes
— Segmentation efficient for sparse address spaces

— A correct program should never address gaps (except as mentioned
iIn moment)

» If it does, trap to kernel and dump core
When 1t 1s OK to address outside valid range?
— This is how the stack and heap are allowed to grow

— For instance, stack takes fault, system automatically increases size of
stack

Need protection mode in segment table
— For example, code segment would be read-only
— Data and stack would be read-write (stores allowed)
— Shared segment could be read-only or read-write
What must be saved/restored on context switch?
— Segment table stored in CPU, not in memory (small)

— Might store all of processes memory onto disk when switched (called
“swapping’)

8/10/18 CS162 ©UCB Fall 2018 Lec 12.42



Problems with Segmentation

* Must fit variable-sized chunks into physical memory
* May move processes multiple times to fit everything
* Limited options for swapping to disk

* Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don't need all memory within allocated chunks
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Recall: General Address Translation

Virtual
Address
Space |

Address
Space 2

Translation Map |

Translation Map 2

Physical Address Space
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Paging: Physical Memory in Fixed Size Chunks

* Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory Is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1 = allocated, @ = free

* Should pages be as big as our previous segments!
— No: Can lead to lots of internal fragmentation
» Typically have small pages (IK-16K)
— Consequently: need multiple pages/segment
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How to Implement Paging?

Virtual Address: Offset i 1
PageTablePtr | page #0
Offset
ot [ o

| page #2 v RW Physical Address

ILageTableSize I_> T  page #3 V,R,W Check Perm
| page #4 N ‘
Access Error page #5 VR W Access
* Page Table (One per process) Error

— Resides in physical memory

— Contains physical page and permission for each virtual page
» Permissions include: Valid bits, Read, Write, etc

* Virtual address mapping

— Offset from Virtual address copied to Physical Address
» Example: |0 bit offset = [024-byte pages

— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, 1.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions
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Simple Page Table Example

Example (4 byte pages)

: ox00 [ 0000 0000 0x00
: b ‘
. o[ 0001 00003 gx04 —
: i | |
: 0x04 Jel— 0000 0100 — 1[3 oooo11o((] JI< 0x05!
: f W
: o 0000 010 |
: 0x067 | I—> 1 0x08 [
0x08 JIJ— 0000 1000 Page > 0x0C =
: 0x09? | Table ]
: k g 0XOE!
> 0x10 2—
Virtual 0000 0110 ====> 0000 1110 :
Memory 00001001 ===-> 0000 0101 c
d
Physical
................................................................................. Memory ...
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What about Sharing?

(Process A):

This physical page
appears in address
space of both processes

Virtual Address
(Process B):
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Summary: Paging

_ _ Page Table
1111 1111 1110 11100 70 77
BT —— n f—]
1111 0000 1 11101| null \
11100| null e
11011| null 1110 0000
11001| null
1100 0000 11000| null
10111| null
10110 null
10100/ null
— \10011 null
eap 10010{ 10000
1000 0000 §10001 01111 ;
10000 01110 0111 000
01111| null
01110 null
01101| null 0101 000
01100 null
0100 0000 01011( 01101
01010| 01100
01001| 01011
01000/ 01010
00111| null ——code
~ode 00110| null 0001 0000
0000 0000 podpd I I 0000 0000
00011| 00101
page # offset 00010 00100
00001| 00011
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Summary: Paging

_ _ Page Table
Virtual memory view 11111 [ 11101 Physical memory view
o ————iirio 11100 \_
—stack— 11101 null \
11100 null —S’ta-ck—-l-no 0000
1110 0000 11011| null
/ 11001| null
4 - 11000| null
What happens if 10111
stack grows to }gm nullll
nu
1110 0000? RS 1
. e \10011 null
cdlp 10010/ 10000
1000 0000 §10001 01111 ;
10000 01110 0111 000
01111 null
01110 null
01101| null 0101 000
01100| null
0100 0000 01011 01101
01010| 01100
01001| 01011
01000| 01010
00111| null ——coae |
00110| null 0001 0000
0000 0000 code \38}8; null I 0000 0000
00011| 00101
page # offset 00010 00100
00001| 00011
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Summary: Paging

Page Table
11111 [ 11101 Physical memory view

/__________..—-—-—-V

— 1110|1100

- stack—__——— " 11101| 10111
/

11100| 10110
1110 0000 11011| null

l, 11010| null
11001| null
1100 0000 11000| null
10111| null
10110 null
10101| null
10100/ null

100111 null Allocate new

10010| 10000 pages where
10001| 01111 R

10000/ 01110 room!
01111/ null
01110| null
01101| null 0101 000
01100| null
01011| 01101
01010/ 01100
01001| 01011

01000| 01010
00111| null
00110| null 0001 0000
00101, null
0000 0000 00100 null 0000 0000
- 00011| 00101
page # offset 00010 00100

00001| 00011
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Virtual memory view
1111 1111

1110 0000

1000 0000

0100 0000

%
0




Page Table Discussion

* \WWhat needs to be switched on a context switch!?
— Page table pointer and limit

* Analysis

— Pros
» Simple memory allocation
» Easy to share

— Con: What If address space Is sparse!
» E.g., on UNIX, code starts at O, stack starts at (23'-1)
» With |K pages, need 2 million page table entries!

— Con: What If table really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

* How about multi-level paging or combining paging and
segmentation?
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Fix for sparse address space: The two-level page table
Physical
Address:

|0 bits |0 bits |2 bits
Virtual

Address:

—> 4 bytes <

* Tree of Page Tables
* Tables fixed size (1024 entries)

— On context-switch: save single

Page TablePtr register 7’
Pa—

* Valid bits on Page Table Entries
— Don't need every 2"d-level table
— Even when exist, 2"%-level tables can

reside on disk If not in use
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Summary: Two-Level Paging

Virtual memory view

11711 1111

1111 0000

1100 0000

1000 0000

0100 0000 -

page2 #
0006 3000
—

—stack—

|

——code

Page Tables Physical memory view
{level 2 I
11| 11101
10| 11100 stack 1110 0000
01| 10111
00| 1011
(level 1) stack—
11| & 11| null
110| null 10| 10000 _
101\ null 01| 01111
100 00| 01110
011 null
010 e
001| nul | ———» 0111 000
000 O 11| 01101
10| 01100
01| 01011 0101 000
00| 01010
11| 00101
10| 00100 /—cede—
01| 00011
00! 00010 —— 0001 0000

pagel # offset
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Summary: Two-Level Paging

Virtual memory view

1001 0000
(0x90)

8/10/18

—stack—

|

Page Table
(level 1)

11| @

011\ null
010| o
001\ null
000| ®

Page Tables
(level 2)

11
10
01
00

11101
11100
10111
10110

null

01111
01110

11
ol mar |~ COIOHDT
101| null 01
eap 00

11
10
01
00

01101
01100
01011
01010

11
10
01

00

00101
00100
00011
00010

CS162 ©UCB Fall 2018

Physical memory view

il

—code
—

1110 0000

1000 0000
(0x80)

0001 0000
0000 0000
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Multi-level Translation: Segments + Pages

* What about a tree of tables!?

— Lowest level page table = memory still allocated with britmap
— Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual
Address: l

page #0 V,R

Desel Lk et Ln o [ERE O ]

Base | itl |V Physical Address

Base3 | Limit3\ N

g:::g :::2:2‘51 Check Permissions
Base6 | Limité | N '
Base7 | Limit7 |V >_,Access Access

Error Error

* What must be saved/restored on context switch?

— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)
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8/10/18

What about Sharing (Complete Segment)?

Process A

BaseO

LimitO

Basel

Base3

el |

Limit3

Base4

Limit4

Base5

Limit5

Baseb

Limité

Base7

Limit7

<ZI1ZI<|Z <

Process B

 page #0 V,R

| page #l V,R
 page #2 V,R,W
 page #3 VR,W
_Egge:#4 N

| page #5 V,R,W

Shared Segment

Base(

Limit0

Basel

Base3

Limitl

Limit3

Base4

Limit4

Base5

Limit5

Baseb

Limité

Base7

Limit7

<I1Z1ZI<|1ZI<I<[<
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Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we need for
application

» In other wards, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

* Cons:
— One pointer per page (typically 4K — [6K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one page
in size
— Two (or more, If >2 levels) lookups per reference
» Seems very expensivel
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Summary

* Segment Mapping
— Segment registers within processor

— Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

— Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base

» Page Tables

— Memory divided into fixed-sized chunks of memory

— Virtual page number from virtual address mapped through page table

to physical page number

— Offset of virtual address same as physical address

— Large page tables can be placed into virtual memory
* Multi-Level Tables

— Virtual address mapped to series of tables

— Permit sparse population of address space
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