CS162
Operating Systems and
Systems Programming

Lecture 13

Address Translation, and Caching

October 10, 2018
Prof. lon Stoica
http://cs | 62.eecs.Berkeley.edu

Problems with Segmentation

segment 6

segment 5

segment 6

segment 5

segment 6

segment 2

segment 1

segment 5

segment 6

A

segment 9

segment 9

segment 1

Segment 10

segment 1

_imited options for swapping to disk

-ragmentation: wasted space

segment 1

— External: free gaps between allocated chunks

1

segment 11

)

Must fit variable-sized chunks into physical memory

May move segments multiple times to fit everything

— Internal: don't need all memory within allocated chunks

CS162 ©UCB Fall 2018

Lec 13.2

Paging: Physical Memory in Fixed Size Chunks

* Solution to fragmentation from segments!
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory Is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1 = allocated, @ = free

* Should pages be as big as our previous segments!
— No: Can lead to lots of internal fragmentation
» Typically have small pages (IK-16K)

— Consequently: need many, many pages

10/10/18 CS162 ©UCB Fall 2018 Lec 13.3

How to Implement Paging?

1

Physical Address

Check Perm

Virtual Address: Offset i
PageTablePtr | page #0
 page #| :
ILageTableSize |—’ ﬁi Zi zix
Access Error ﬁ: Z: \I;,IR,W

* Page Table (One per process)

10/10/18

— Resides in physical memory

v

Access
Error

— Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
* Virtual address mapping
— Offset from Virtual address copied to Physical Address

» Example: |0 bit offset = [024-byte pages

— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, 1.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions

CS162 ©UCB Fall 2018

Lec 13.4

Simple Page Table Example

Example (4 byte pages)

: ox00 [0000 0000 0x00
: b ‘
. o[0001 00003 gx04 —
: i | |
: 0x04 Jel— 0000 0100 — 1[3 oooo11o((] JI< 0x05!
: f W
: o 0000 010 |
: 0x067 | I—> 1 0x08 [
0x08 JIJ— 0000 1000 Page > 0x0C =
: 0x09? | Table]
: k g 0XOE!
> 0x10 2—
Virtual 0000 0110 ====> 0000 1110 :
Memory 00001001 ===-> 0000 0101 c
d
Physical
... Memory ...

10/10/18 CS162 ©UCB Fall 2018 Lec 13.5

What about Sharing?

(Process A):

This physical page
appears in address
space of both processes

Virtual Address
(Process B):

10/10/18 CS162 ©UCB Fall 2018 Lec 13.6

Summary: Paging

_ _ Page Table
1111 1111 1110 11100 70 77
BT —— n f—]
1111 0000 1 11101| null \
11100| null e
11011| null 1110 0000
11001| null
1100 0000 11000| null
10111| null
10110 null
10100/ null
— \10011 null
eap 10010{ 10000
1000 0000 §10001 01111 ;
10000 01110 0111 000
01111| null
01110 null
01101| null 0101 000
01100 null
0100 0000 01011(01101
01010| 01100
01001| 01011
01000/ 01010
00111| null ——code
~ode 00110| null 0001 0000
0000 0000 podpd I I 0000 0000
00011| 00101
page # offset 00010 00100
00001| 00011
10/10/18 00000l 00010 Lec 13.7

Summary: Paging

_ _ Page Table
Virtual memory view 11111 [11101 Physical memory view
o ————iirio 11100 _
—stack— 11101 null \
11100 null —S’ta-ck—-l-no 0000
1110 0000 11011| null
/ 11001| null
4 - 11000| null
What happens if 10111
stack grows to }gm nullll
nu
1110 0000? RS 1
. e \10011 null
cdlp 10010/ 10000
1000 0000 §10001 01111 ;
10000 01110 0111 000
01111 null
01110 null
01101| null 0101 000
01100| null
0100 0000 01011 01101
01010| 01100
01001| 01011
01000| 01010
00111| null ——coae |
00110| null 0001 0000
0000 0000 code \38}8; null I 0000 0000
00011| 00101
page # offset 00010 00100
00001| 00011
10/10/18 00000/ 00010 Lec 13.8

Summary: Paging

Page Table
11111 [11101 Physical memory view

/__________..—-—-—-V

— 1110|1100

- stack—__——— " 11101| 10111
/

11100| 10110
1110 0000 11011| null

l, 11010| null
11001| null
1100 0000 11000| null
10111| null
10110 null
10101| null
10100/ null

100111 null Allocate new

10010| 10000 pages where
10001| 01111 R

10000/ 01110 room!
01111/ null
01110| null
01101| null 0101 000
01100| null
01011| 01101
01010/ 01100
01001| 01011

01000| 01010
00111| null
00110| null 0001 0000
00101, null
0000 0000 00100 null 0000 0000
- 00011| 00101
page # offset 00010 00100

00001| 00011
10/10/18 0ooool ooo1o Lec 13.9

Virtual memory view
1111 1111

1110 0000

1000 0000

0100 0000

%
0

Page Table Discussion

* \WWhat needs to be switched on a context switch!?
— Page table pointer and limit

* Analysis

— Pros
» Simple memory allocation
» Easy to share

— Con: What If address space Is sparse!
» E.g., on UNIX, code starts at O, stack starts at (23'-1)
» With |K pages, need 2 million page table entries!

— Con: What If table really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

* How about multi-level paging or combining paging and
segmentation?

10/10/18 CS162 ©UCB Fall 2018 Lec 13.10

Fix for sparse address space: The two-level page table
Physical
Address:

|0 bits |0 bits |2 bits
Virtual

Address:

* Tree of Page Tablés * 7

* Tables fixed size (1024 entries)

— On context-switch: save single

Page TablePtr register 7’
Pa—

* Valid bits on Page Table Entries
— Don't need every 2"d-level table
— Even when exist, 2"%-level tables can

reside on disk If not in use
10/10/18 CS162 ©UCB Fall 2018 Lec 13.11

—> 4 bytes

Summary: Two-Level Paging

Virtual memory view

11711 1111

1111 0000

1100 0000

1000 0000

0100 0000 -

page2 #
0006 3000
—

—stack—

|

——code

Page Tables Physical memory view
{level 2 I
11| 11101
10| 11100 stack 1110 0000
01| 10111
00| 1011
(level 1) stack—
11| & 11| null
110| null 10| 10000 _
101\ null 01| 01111
100 00| 01110
011 null
010 e
001| nul | ———» 0111 000
000 O 11| 01101
10| 01100
01| 01011 0101 000
00| 01010
11| 00101
10| 00100 /—cede—
01| 00011
00! 00010 —— 0001 0000

pagel # offset

10/10/18

CS162 ©UCB Fall 2018

[0000 0000

Lec 13.12

Summary: Two-Level Paging

Virtual memory view

1001 0000
(0x90)

10/10/18

—stack—

|

Page Table
(level 1)

11| @

011\ null
010| o
001\ null
000| ®

Page Tables
(level 2)

11
10
01
00

11101
11100
10111
10110

null

01111
01110

11
ol mar |~ COIOHDT
101| null 01
eap 00

11
10
01
00

01101
01100
01011
01010

11
10
01

00

00101
00100
00011
00010

CS162 ©UCB Fall 2018

Physical memory view

il

—code
—

1110 0000

1000 0000
(0x80)

0001 0000
0000 0000

Lec 13.13

Multi-level Translation: Segments + Pages

* What about a tree of tables!?

— Lowest level page table = memory still allocated with britmap
— Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual
Address:

BaseO

Limit

Basel

Base3

it

Limit3

Base4

Limit4

Base5

Limit5

Baseb

Limité

Base7

Limit7

<[Z

page #0 VR l

Physical Address

Check Permissions

>)—A\ccess Access

Error Error

* What must be saved/restored on context switch?

— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)

10/10/18

CS162 ©UCB Fall 2018 Lec 13.14

10/10/18

What about Sharing (Complete Segment)?

Process A

BaseO

LimitO

Basel

Base3

el |

Limit3

Base4

Limit4

Base5

Limit5

Baseb

Limité

Base7

Limit7

<ZI1ZI<|Z <

Process B

 page #0 V,R

| page #l V,R
 page #2 V,R,W
 page #3 VR,W
_Egge:#4 N

| page #5 V,R,W

Shared Segment

Base(

Limit0

Basel

Base3

Limitl

Limit3

Base4

Limit4

Base5

Limit5

Baseb

Limité

Base7

Limit7

<I1Z1ZI<|1ZI<I<[<

CS162 ©UCB Fall 2018

Lec 13.15

Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we need for
application

» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

* Cons:
— One pointer per page (typically 4K — [6K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one page
in size
— Two (or more, If >2 levels) lookups per reference
» Seems very expensivel

10/10/18 CS162 ©UCB Fall 2018 Lec 13.16

What is in a Page Table Entry

* What is in a Page Table Entry (or PTE)?
— Pointer to next-level page table or to actual page
— Permission bits: valid, read-only, read-write, write-only
* Example: Intel x86 architecture PTE:
— Address same format previous slide (10, 10, 12-bit offset)
— Intermediate page tables called "Directories”

31-12 11-9 8 7 6 543210
Present (same as “valid” bit in other architectures)

Writeable

User accessible

Page write transparent: external cache write-through
Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently

Dirty (PTE only): page has been modified recently
L=1= 4MB page (directory only).

Bottom 22 bits of virtual address serve as offset

5=
)
—O»03CZ v

10/10/18 CS162 ©UCB Fall 2018 Lec 13.17

Physical
Addresses

* What, exactly happens inside MMU?
* One possibility: Hardware Tree Traversal
— For each virtual address traverses the page table in hardware
— Generates a “Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture
— Pros: Relatively fast (but still many memory accesses!)
— Cons: Inflexible, Complex hardware
* Another possibility: Software
— Each traversal done in software
— Pros: Very flexible
— Cons: Every translation must invoke Fault!

* In fact, need way to cache translations for either case!
10/10/18 CS162 ©UCB Fall 2018 Lec 13.18

Recall: Dual-Mode Operation (1/2)

* Can a process modify its own translation tables?
— NO!
— If it could, could get access to all of physical memory

— Has to be restricted somehow

* To Assist with Protection, hardware provides at least two
modes (Dual-Mode Operation):
— "Kemel” mode (or “supervisor’ or “protected”)
— "User’” mode (Normal program mode)

— Mode set with bits In special control register only accessible in
kernel-mode

10/10/18 CS162 ©UCB Fall 2018 Lec 13.19

BREAK

10/10/18 CS162 ©UCB Fall 2018 Lec 13.20

Caching Concept

=

» Cache: a repository for copies that can be accessed more quickly than
the original

— Make frequent case fast and infrequent case less dominant

Caching underlies many techniques used today to make computers fast

— Can cache: memory locations, address translations, pages, file blocks,
file names, network routes, etc...

Only good If:
— Frequent case frequent enough and
— Infrequent case not too expensive

Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

10/10/18 CS162 ©UCB Fall 2018 Lec 13.21

Why Bother with Caching?

Processor-DRAM Memory Gap (latency)
LOOO |

“Moore’s Law”’
(really Joy's Law)

“ pProc

60%lyr
(2X/1.5yr)

v~ DRAM
i 9%y
| = (2X/10 yrs)

“Less Law?”

Performance

10/10/18 CS162 ©UCB Fall 2018 Lec 13.22

Another Major Reason to Deal with Caching

Virtual
Address:

BaseO

Basel

Base

Base3

Base4

Limit4

Base5

Limit5

Baseb

Limité

Base7

Limit7

<Z

page #0 V,R
page #| V,R
page #2 R, W.
page #3 V,RW
page #4 N
page #5 V,R,W

* Cannot afford to translate on every access
— At least three DRAM accesses per actual DRAM access

— Or: perhaps I/O if page table partially on disk!

|

Physical Address

Check Pern

v

Access
Error

* Even worse: What if we are using caching to make memory access
faster than DRAM access!

* Solution?! Cache translations!
— Translation Cache: TLB (“Translation Lookaside Buffer”)

10/10/18

CS162 ©UCB Fall 2018

Lec 13.23

Why Does Caching Help? Locality!

Probability
of reference

0

Address Space

* Temporal Locality (Locality in Time):
— Keep recently accessed data items closer to processor

* Spatial Locality (Locality in Space):
— Move contiguous blocks to the upper levels

To Processor

From Processor

10/10/18

o
»

Upper Level
Memory

Blk X

Lower Level
Memory

BlIkY

CS162 ©UCB Fall 2018

Lec 13.24

Memory Hierarchy of a Modern Computer System

 Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology

— Provide access at speed offered by the fastest technology

Processor

Control

Datapath

Speed (ns): s | 0s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms-Gs Gs-Ts Ts-Ps

10/10/18 CS162 ©UCB Fall 2018 Lec 13.25

A Summary on Sources of Cache Misses

Compulsory (cold start or process migration, first reference): first
access to a block

— "Cold" fact of life: not a whole lot you can do about it

— Note: If you are going to run “billions” of instruction, Compulsory
Misses are insignificant

Capacity:
— Cache cannot contain all blocks access by the program

— Solution: increase cache size

Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution |: increase cache size

— Solution 2: increase associativity

Coherence (Invalidation): other process (e.g., I/O) updates memory

10/10/18 CS162 ©UCB Fall 2018 Lec 13.26

How is a Block found in a Cache?

Set Select

- | Data Select
* Block is minimum quantum of caching

— Data select field used to select data within block

— Many caching applications don’t have data select field
* Index Used to Lookup Candidates in Cache

— Index identifies the set
* Tag used to identify actual copy

— If no candidates match, then declare cache miss

10/10/18 CS162 ©UCB Fall 2018 Lec 13.27

Review: Direct Mapped Cache

* Direct Mapped 2N byte cache:

— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size = 2M)

* Example: | KB Direct Mapped Cache with 32 B Blocks

— Index chooses potential block
— Tag checked to verify block
ngyte select chooses byte within block o

4 0
Cache Tag A Cache Index Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
I
Valid Bit Cache Tag Cache Data
P Bylse.:i.l.....'.'...Bm.l...Bm'L.!_)
0x50 Byte 63| °* | Byte 33| Byte 32| 1 ¢
Byte 1023 Byte 992 | 31
10/10/18 CS162 ©UCB Fall 2018 Lec 13.28

Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

* Example: Two-way set associative cache

— Cache Index selects a “set” from the cache

— Two tags in the set are compared to input in parallel

a Data Is selected based on the tag rsesult

4 0

r——1

Cache Tag Cache Index Byte Select
i J
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
ol S DU A B A S I U D S B -1
< |
== F - e F === === = = |
D_S\Sen ——ux 0 SelO/_C
()
OR
N
: l
10/10/18 Hit Cache Block Lec 13.29

Review: Fully Associative Cache
* Fully Associative: Every block can hold any line

— Address does not include a cache index

— Compare Cache Tags of all Cache Entries in Parallel
* Example: Block Size=32B blocks

— We need N 2/-bit comparators

— Still have byte select to choose from within block

31 4 0
Ex: 0x01
Cache Tag Valid Bit Cache Data I
Q-
/

Byte 31| °° Byte 0
Byte 63| °° | Byte 33| Byte 32

0

v v
@ O
A A v

10/10/18 CS162 ©UCB Fall 2018 Lec 13.30

Where does a Block Get Placed in a Cache!?

* Example: Block |2 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:
block 12 can go block 12 can go block 12 can go
only into block 4 anywhere in set 0 anywhere
(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.

Set Set Set Set
0 1 2 3

10/10/18 CS162 ©UCB Fall 2018 Lec 13.31

Review: Which block should be replaced on a miss!?

 Easy for Direct Mapped: Only one possibility
* Set Associative or Fully Associative:

— Random
— LRU (Least Recently Used)

 Miss rates for a workload:

2-way 4-way 8-way
Size | RU Random [RU Random | RU Random

|6 KB 52% 57% 47% 53% 44% 50%
64 KB 1.9% 2.0% 1.5% |.7% 4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% |.12% 1.12%

10/10/18 CS162 ©UCB Fall 2018 Lec 13.32

Review: What happens on a write!

* Write through: The information is written to both the block in the
cache and to the block in the lower-level memory

* White back: The information is written only to the block in the
cache

— Modified cache block is written to main memory only when 1t is
replaced

— Question Is block clean or dirty!
e Pros and Cons of each?
—WT:
» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
— WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data

10/10/18 CS162 ©UCB Fall 2018 Lec 13.33

Caching Applied to Address Translation

Virtual

Physical
Address

Address

Data Read or Write

(untranslated)
* Question is one of page locality: does it exist!

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
* Can we have a TLB hierarchy?
— Sure: multiple levels at different sizes/speeds
10/10/18 CS162 ©UCB Fall 2018 Lec 13.34

What Actually Happens on a TLB Miss? (1/2)

* Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» It PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

 Software traversed Page tables (like MIPS)
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE

» It PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

10/10/18 CS162 ©UCB Fall 2018 Lec 13.35

What Actually Happens on a TLB Miss? (2/2)

* Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since they
use translation for many things

— Examples:
» shared segments

» user-level portions of an operating system

10/10/18 CS162 ©UCB Fall 2018 Lec 13.36

What happens on a Context Switch!?

* Need to do something, since TLBs map virtual addresses to physical
addresses

— Address Space just changed, so TLB entries no longer valid!
* Options!
— Invalidate TLB: simple but might be expensive
» What If switching frequently between processes?
— Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What If translation tables change!
— For example, to move page from memory to disk or vice versa...
— Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

10/10/18 CS162 ©UCB Fall 2018 Lec 13.37

Summary (1/2)

* Page Tables
— Memory divided into fixed-sized chunks of memory

— Virtual page number from virtual address mapped through page table
to physical page number

— Offset of virtual address same as physical address

— Large page tables can be placed into virtual memory

* Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space

10/10/18 CS162 ©UCB Fall 2018 Lec 13.38

Summary (2/2)
* The Principle of Locality:

— Program likely to access a relatively small portion of the address
space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

* Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or I/O devices

* Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set

— Fully associative: all entries equivalent
10/10/18 CS162 ©UCB Fall 2018 Lec 13.39

Recall: Dual-Mode Operation (2/2)

* Intel processor actually has four “rings’” of protection:
— PL (Privilege Level) from O — 3
» PLO has full access, PL3 has least
— Privilege Level set in code segment descriptor (CS5)

— Mirrored “IOPL" bits in condrition register gives permission to
programs to use the I/O instructions

— Typical OS kernels on Intel processors only use PLO (“kernel™)
and PL3 (“user’™)

10/10/18 CS162 ©UCB Fall 2018 Lec 13.40

How to get from Kernel—>User

* What does the kernel do to create a new user process!
— Allocate and initialize address-space control block
— Read program off disk and store in memory
— Allocate and initialize translation table
» Point at code In memory so program can execute
» Possibly point at statically initialized data
— Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

* How does kernel switch between processes!

— Same saving/restoring of registers as before

— Save/restore PSL (hardware pointer to translation table)
10/10/18 CS162 ©UCB Fall 2018 Lec 13.41

Recall: User—Kernel (System Call)

* Can't let iInmate (user) get out of padded cell on own
— Would defeat purpose of protection!
— S0, how does the user program get back into kernel?

user process
user mode

user process executing » calls system call return from system call (mode bit = 1)}
\ 7
L 7
1 V4
. | trap return
. mode bit=0 mode bit = 1
kernel mode
(mode bit = 0)|

execute system call

* System call: Voluntary procedure call into kernel
— Hardware for controlled User—Kernel transition
— Can any kernel routine be called?
» Nol Only specific ones.
— System call ID encoded into system call instruction

» Index forces well-defined interface with kernel
10/10/18 CS162 ©UCB Fall 2018 Lec 13.42

Recall: System Call Continued (1/2)

* What are some system calls!
—1/O: open, close, read, write, Iseek
— Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
— Process: fork, exit, wairt (like join)

— Network: socket create, set options

* Are system calls constant across operating systems?

— Not entirely, but there are lots of commonalities
— Also some standardization attempts (POSIX)

10/10/18 CS162 ©UCB Fall 2018 Lec 13.43

Recall: System Call Continued (2/2)

* What happens at beginning of system call?

» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

* System call argument passing:
— In registers (not very much can be passed)
— Write into user memory, kernel copies into kernel mem
» User addresses must be translated!
» Kernel has different view of memory than user

— Bvery argument must be explicitly checked!

10/10/18 CS162 ©UCB Fall 2018 Lec 13.44

Recall: User—Kernel (Exceptions: Traps & Interrupts)

* A system call instruction causes a synchronous exception
(or "trap™)
— In fact, often called a software “trap” instruction
» Other sources of Synchronous Exceptions (“Trap”):

— Divide by zero, lllegal instruction, Bus error (bad address, e.g.
unaligned access)

— Segmentation Fault (address out of range)

— Page Fault (for illusion of infinite-sized memory)
* Interrupts are Asynchronous Exceptions

— Examples: timer, disk ready, network; etc....

— Interrupts can be disabled, traps cannot!

10/10/18 CS162 ©UCB Fall 2018 Lec 13.45

Recall: User—Kernel (Exceptions: Traps & Interrupts)

* On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel

— For some processors (x86), processor also saves registers, changes
stack, etc.

* Actual handler typically saves registers, other CPU state,
and switches to kernel stack

10/10/18 CS162 ©UCB Fall 2018 Lec 13.46

Closing thought: Protection without Hardware (1/2)

* Does protection require hardware support for translation
and dual-mode behavior?

— No: Normally use hardware, but anything you can do In
hardware can also do in software (possibly expensive)

* Protection via Strong Typing

— Restrict programming language so that you can't express
program that would trash another program

— Loader needs to make sure that program produced by valid
compiler or all bets are off

— Example languages: LISP, Ada, Modula-3 and Java

10/10/18 CS162 ©UCB Fall 2018 Lec 13.47

Closing thought: Protection without Hardware (2/2)

e Protection via software fault isolation:

— Language independent approach: have compiler generate object
code that provably cant step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof’ that code cannot do
certain things (Proof Carrying Code)

— Or: use virtual machine to guarantee safe behavior (loads and
stores recompiled on fly to check bounds)

10/10/18 CS162 ©UCB Fall 2018 Lec 13.48

