
CS162
Operating Systems and
Systems Programming

Lecture 14

Caching (Finished),
Demand Paging

October 15th, 2017
Ion Stoica

http://cs162.eecs.Berkeley.edu

Lec 14.211/15/18 CS162 ©UCB Fall 18

Recall: In Machine Structures (eg. 61C) …

• Caching is the key to memory system performance

Average Access time=(Hit Rate x HitTime) + (Miss Rate x MissTime)
HitRate + MissRate = 1

HitRate = 90% => Avg. Access Time=(0.9 x 10) + (0.1 x 100)=19ns
HitRate = 99% => Avg. Access Time=(0.99 x 10) + (0.01 x 100)=10.9 ns

Processor

Main
Memory
(DRAM)

100ns10ns

Second
Level
Cache
(SRAM)

Processor

Main
Memory
(DRAM)

100ns

Access time = 100ns

Lec 14.311/15/18 CS162 ©UCB Fall 18

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

Lec 14.411/15/18 CS162 ©UCB Fall 18

Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Lec 14.511/15/18 CS162 ©UCB Fall 18

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

Lec 14.611/15/18 CS162 ©UCB Fall 18

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 0 1 2 3Block
no.

Set 0 Set 1

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?

Lec 14.711/15/18 CS162 ©UCB Fall 18

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Miss rates for a workload:
2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Which block should be replaced on a miss?

Lec 14.811/15/18 CS162 ©UCB Fall 18

• Write through (WT): The information is written to both the block
in the cache and to the block in the lower-level memory

• Write back (WB): The information is written only to the block in
the cache

– Modified cache block is written to main memory only when it is
replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require writeback of dirty data

What happens on a write?

Lec 14.911/15/18 CS162 ©UCB Fall 18

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Lec 14.1011/15/18 CS162 ©UCB Fall 18

Recall: What Actually Happens on a TLB Miss?

• Hardware traversed page tables:
– On TLB miss, hardware in MMU looks at current page table to fill TLB

(may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which kernel decides

what to do afterwards

• Software traversed Page tables
– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults since they use

translation for many things
– Examples:

» shared segments
» user-level portions of an operating system

Lec 14.1111/15/18 CS162 ©UCB Fall 18

Transparent Exceptions: TLB/Page fault (1/2)

• How to transparently restart faulting instructions?
– (Consider load or store that gets TLB or Page fault)
– Could we just skip faulting instruction?

» No: need to perform load or store after reconnecting
physical page

Software
Load TLB

Fa
ul

tin
g

In
st

 1

Fa
ul

tin
g

In
st

 1

Fa
ul

tin
g

In
st

 2

Fa
ul

tin
g

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 14.1211/15/18 CS162 ©UCB Fall 18

Transparent Exceptions: TLB/Page fault (2/2)

• Hardware must help out by saving:
– Faulting instruction and partial state

» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Software
Load TLB

Fa
ul

tin
g

In
st

 1

Fa
ul

tin
g

In
st

 1

Fa
ul

tin
g

In
st

 2

Fa
ul

tin
g

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 14.1311/15/18 CS162 ©UCB Fall 18

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once read-only

• What about “RISC” processors?
– For instance delayed branches?

» Example: bne somewhere
ld r1,(sp)

» Precise exception state consists of two PCs: PC and nPC (next PC)
– Delayed exceptions:

» Example: div r1, r2, r3
ld r1, (sp)

» What if takes many cycles to discover divide by zero, but load has
already caused page fault?

Lec 14.1411/15/18 CS162 ©UCB Fall 18

Precise Exceptions
• Precise Þ state of the machine is preserved as if program

executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as if they have

not even started
– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order execution, ...
– MIPS takes this position

• Imprecise Þ system software has to figure out what is where
and put it all back together

• Performance goals often lead to forsaking precise interrupts
– System software developers, user, markets etc. usually wish they had

not done this
• Modern techniques for out-of-order execution and branch

prediction help implement precise interrupts

Lec 14.1511/15/18 CS162 ©UCB Fall 18

Recall: TLB Organization

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much higher than slightly

increased cost of access (Hit Time)
• Thrashing: continuous conflicts between accesses

– What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

Lec 14.1611/15/18 CS162 ©UCB Fall 18

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap TLB lookup
with cache access.

– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

CPU TLB Cache Memory

Lec 14.1711/15/18 CS162 ©UCB Fall 18

Overlapping TLB & Cache Access (1/2)

• Main idea:
– Offset in virtual address exactly covers the “cache index”

and “byte select”
– Thus can select the cached byte(s) in parallel to perform

address translation

OffsetVirtual Page #

indextag / page # byte

virtual address

physical address

Lec 14.1811/15/18 CS162 ©UCB Fall 18

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2

00
4 bytes

index 1 K

virtual page # disp
20

assoc
lookup

32

Hit/
Miss

Tag Data Hit/
Miss

=page #

Overlapping TLB & Cache Access

Lec 14.1911/15/18 CS162 ©UCB Fall 18

Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Lec 14.2011/15/18 CS162 ©UCB Fall 18

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Lec 14.2111/15/18 CS162 ©UCB Fall 18

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

Lec 14.2211/15/18 CS162 ©UCB Fall 18

BREAK

Lec 14.2311/15/18 CS162 ©UCB Fall 18

Next Up: What happens when …

virtual address

MMU
PT

instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

Lec 14.2411/15/18 CS162 ©UCB Fall 18

Where are all places that caching arises in OSes?

• Direct use of caching techniques
– TLB (cache of PTEs)
– Paged virtual memory (memory as cache for disk)
– File systems (cache disk blocks in memory)
– DNS (cache hostname => IP address translations)
– Web proxies (cache recently accessed pages)

• Which pages to keep in memory?
– All-important “Policy” aspect of virtual memory
– Will spend a bit more time on this in a moment

Lec 14.2511/15/18 CS162 ©UCB Fall 18

Impact of caches on Operating Systems (1/2)

• Indirect - dealing with cache effects (e.g., sync state across levels)
– Maintaining the correctness of various caches
– E.g., TLB consistency:

» With PT across context switches ?
» Across updates to the PT ?

• Process scheduling
– Which and how many processes are active ? Priorities ?
– Large memory footprints versus small ones ?
– Shared pages mapped into VAS of multiple processes ?

Lec 14.2611/15/18 CS162 ©UCB Fall 18

Impact of caches on Operating Systems (2/2)

• Impact of thread scheduling on cache performance
– Rapid interleaving of threads (small quantum) may degrade

cache performance
» Increase average memory access time (AMAT) !!!

• Designing operating system data structures for cache
performance

Lec 14.2711/15/18 CS162 ©UCB Fall 18

Working Set Model

• As a program executes it transitions through a sequence of
“working sets” consisting of varying sized subsets of the address
space

Time

A
dd

re
ss

Lec 14.2811/15/18 CS162 ©UCB Fall 18

Cache Behavior under WS model

• Amortized by fraction of time the Working Set is active
• Transitions from one WS to the next
• Capacity, Conflict, Compulsory misses
• Applicable to memory caches and pages. Others ?

H
it

R
at

e

Cache Size

new working set fits

0

1

Lec 14.2911/15/18 CS162 ©UCB Fall 18

Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α 1/ra

• Although rare to access items below the top few, there are so many
that it yields a “heavy tailed” distribution

• Substantial value from even a tiny cache
• Substantial misses from even a very large cache

0

0.2

0.4

0.6

0.8

1

0%

5%

10%

15%

20%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Es
tim

at
ed

 H
it

R
at

e

Po
pu

la
ri

ty
 (

%
 a

cc
es

se
s)

Rank

P access(rank) = 1/rank

pop a=1

Hit Rate(cache)

Lec 14.3011/15/18 CS162 ©UCB Fall 18

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their
code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching

Lec 14.3111/15/18 CS162 ©UCB Fall 18

Page
Table

T
LB

Illusion of Infinite Memory (1/2)

• Disk is larger than physical memory Þ
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical

memory
» More programs fit into memory, allowing more concurrency

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory
4 GB

Lec 14.3211/15/18 CS162 ©UCB Fall 18

Page
Table

T
LB

Illusion of Infinite Memory (2/2)

• Principle: Transparent Level of Indirection (page table)
– Supports flexible placement of physical data

» Data could be on disk or somewhere across network
– Variable location of data transparent to user program

» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory
4 GB

Lec 14.3311/15/18 CS162 ©UCB Fall 18

Since Demand Paging is Caching, Must Ask…

• What is block size?
– 1 page

• What is organization of this cache (i.e. direct-mapped, set-
associative, fully-associative)?

– Fully associative: arbitrary virtual ® physical mapping
• How do we find a page in the cache when look for it?

– First check TLB, then page-table traversal
• What is page replacement policy? (i.e. LRU, Random…)

– This requires more explanation… (kinda LRU)
• What happens on a miss?

– Go to lower level to fill miss (i.e. disk)
• What happens on a write? (write-through, write back)

– Definitely write-back – need dirty bit!

Lec 14.3411/15/18 CS162 ©UCB Fall 18

Summary: Steps in Handling a Page Fault

Lec 14.3511/15/18 CS162 ©UCB Fall 18

Summary
• A cache of translations called a “Translation Lookaside Buffer” (TLB)

– Relatively small number of PTEs and optional process IDs (< 512)
– Fully Associative (Since conflict misses expensive)
– On TLB miss, page table must be traversed and if located PTE is

invalid, cause Page Fault
– On change in page table, TLB entries must be invalidated
– TLB is logically in front of cache (need to overlap with cache access)

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

• Can manage caches in hardware or software or both
– Goal is highest hit rate, even if it means more complex cache

management

